Cover Page January-2018-Advanced Materials Letters

Advanced Materials Letters

Volume 9, Issue 1, Pages 86-90, January 2018
About Cover

Cover page describe the Schematic diagram of surface faradaic redox reactions on the Fe2O3 nanoparticles on Nitrogen-doped graphene. The Figure has been taken from the manuscript entitled “Graphene-metal oxide nanocomposites for supercapacitors: A perspective review”.


Thermal plasma spheroidization of Nb-16Si powder alloy obtained by mechanical alloying

Nikolay G. Razumov1*, Anatoly A. Popovich1, Andrey V. Samokhin2, Aleksei V. Grigoriev1, 3 

1Peter the Great Saint-Petersburg Polytechnic University, 195251, Polytechnicheskaya, 29, St. Petersburg, Russia

2Institute of Metallurgy and Materials A.A. Baikova, Russian Academy of Sciences, 119991, Leninsky pr., 49, Moscow, Russia

3JSC, Klimov, 194100, Kantemirovskaya St., 11, St. Petersburg, Russia

Adv. Mater. Lett., 2018, 9 (1), pp 86-90

DOI: 10.5185/amlett.2018.7073

Publication Date (Web): May 15, 2018

E-mail: n.razumov@inbox.ru

Abstract

Spherical Nb-Si powder alloy is a perspective material to manufacture products for the aerospace industry by additive technologies. Nb-16Si (at.%) powder alloy was prepared by mechanical alloying from pure elemental powders using planetary ball mill Fritsch Pulverisette 4. Spheroidization was carried out on plasma generator based on thermal plasma arc generator with vortex discharge stabilization. Experimental results show that plasma spheroidizing of Nb-16Si powders obtained by mechanical alloying is possible. It is shown that after the spheroidization the particle surface is rough which indicates the cast structure of the material. Three phases having different optical contrast are revealed on microsections: Nb5Si3, Nb3Si and Nbss, which is confirmed by X-ray diffraction. It is shown that the main peaks in the X-ray graph after MA correspond to a solid solution of niobium with a cubic lattice and the parameter a = 0.333 nm, as well as niobium silicide Nb5Si3 with a hexagonal lattice (P63/m) a = 0.7536 nm and c = 0.5249 nm. After spheroidization the hexagonal lattice of niobium silicide Nb5Si3 is transformed into a tetragonal lattice (I4/m) with the parameter = 0.6557 nm and c = 1.186 nm. The other phase components remain unchanged.

Keywords

Mechanical alloying, in-sute composites, Nb-Si, powder spheroidization, thermal plasma, spherical powder.

Current Issue

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare


Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization


Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system


Innovative Graphene-PDMS sensors for aerospace applications 


Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers


Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates


Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature


Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells


Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity


Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process


Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries


Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration


Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption


Previous issues

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Upcoming Congress

Knowledge Experience at Sea TM