School of Automation Engineering and Center for Robotics, University of Electronic Science and Technology of China, Chengdu, 610054, People’s Republic of China
Adv. Mater. Lett., 2018, 9 (1), pp 81-85
DOI: 10.5185/amlett.2018.7111
Publication Date (Web): May 15, 2018
Copyright © IAAM-VBRI Press
E-mail: pengjiegang@uestc.edu.cn
The active electrolocation technology has been developed for near 60 years and played a significant role in the field of biomimetic sensor. But the influence of the edge characteristics of detected objects on underwater active electrolocation system was rarely investigated. In this paper, an experiment system based on the underwater active electrolocation technology is built. The amplitude information-frequency characteristics (AIFC) for different probed objects with the different edge characteristic and approximate volumes are investigated. Two sets of different edge characteristic shapes (cylinder and cuboid, cone and pyramid), whose volumes are little difference in each sets, are carried out in the same materials to deeply study on the effect. The height variation curve (HVC) is employed to compute the frequency inflection point (FIP) of AIFC for the system. According to experiment results, we find that the FIP for the probed metallic objects with similar volumes is weighty associated to the edge characteristics of objects, while the FIP for the plastic has nothing to do with the edge characteristics of objects. It may have reference value for physical mechanism of weakly electrical fish active electrolocation system.
Object edge characteristic, amplitude information-frequency characteristics (AIFC), height variation curve (HVC), active electrolocation, frequency Inflection Point (FIP).
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study