1School of Engineering, RMIT University, Bundoora East Campus, PO Box 71, Bundoora 3083, VIC, Australia
2School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora 3083, VIC, Australia
Adv. Mater. Lett., 2018, 9 (1), pp 71-80
DOI: 10.5185/amlett.2018.1977
Publication Date (Web): May 15, 2018
Copyright © IAAM-VBRI Press
E-mail: mitchell.jones@student.rmit.edu.au
Composite materials produced using mycelial growth attract commercial and academic interest due to their economic, environmentally sustainable and green manufacturing process. However, their manufacture via slow biological growth affects the larger scale production viability of these materials, which must compete with rapidly producible synthetic materials. Hyphal characteristics vary significantly by species, which is the most influential growth performance factor in conjunction with environmental conditions and chemical nutrition. This study assessed the effect of potential growth predictors such as hyphal type, pathogenicity, taxonomic and association based classification systems on hyphal extension rate and growth density for commonly used and non-traditional species. It provides a simple, low-cost process for screening species by growth performance prior to more application-dependent mechanical evaluation. This facilitates more efficient and accurate species selection for composite manufacturing applications. Trimitic and dimitic species containing skeletal hyphae exhibited higher hyphal extension rates than species containing generative-binding or purely generative hyphae but no other parameters investigated in this study were good predictors for growth performance with significant species-specific variation present instead. However, the methodology used to test growth performance did prove effective and could be used on a case by case basis for growth screening in mycelium composite applications.
Inherent species characteristics, species selection methodology, growth performance assessment, mycelium, composite.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study