Optical and electrical properties of graphene oxide and reduced graphene oxide films deposited onto glass and Ecoflex® substrates towards organic solar cells Optical and electrical properties of graphene oxide and reduced graphene oxide films deposited onto glass and Ecoflex® substrates towards organic solar cells
1Military Institute of Engineer Technology, Obornicka 136 str., Wroclaw 50-961, Poland
2Instituto Politécnico Nacional, Materials and Technologies for Energy, Health and Environment (GESMAT), CICATA Altamira. Km 14.5 Carretera Tampico-Puerto Industrial Altamira, 89600 Altamira, México
3Instituto Politécnico Nacional, Laboratorio de Manufactura y Procesamiento de Materiales, CICATA Querétaro, Cerro Blanco 141 Colinas del Cimatario, 76090 Querétaro, México
4Centro de Investigación en Química Aplicada, Laboratorio Nacional de Materiales Grafénicos, Blvd. Enrique Reyna No. 140, Col. San José de los Cerritos, 25294 Saltillo, Coah. Mexico
Adv. Mater. Lett., 2018, 9 (1), pp 58-65
DOI: 10.5185/amlett.2018.1870
Publication Date (Web): May 15, 2018
Copyright © IAAM-VBRI Press
E-mail: iwan@witi.wroc.pl
Graphene oxide (GO) was synthesized using modified Hummers method. GO films were deposited by doctor blade onto glass slides and Ecoflex® membranes using GO suspensions, or dip-coated onto molecular functionalized glass substrates. Doctor bladed films were studied by optical transmittance, linear sweep voltammetry and by thermal imaging under applied potential. Dip coated films were reduced with different chemical agents to produce transparent, conductive, reduced graphene oxide (rGO) films that were characterized by optical transmittance, current sensing atomic force microscopy and X-ray photoelectron spectroscopy. Doctor bladed GO films were mechanically stable, with resistances ranging 106 to 1011 ohm depending on the film thickness, which in turn depended on the GO precursor solution concentration. Thermal imaging did not provided evidence of visible voltage-activated conduction. The best reduction treatment to obtain transparent and conductive rGO films comprised a primary reduction with NaBH4 followed by an air annealing at 120 ºC. Conductive atomic force microscopy indicated that rGO film conductivity is governed by the superposition of individual sheet and X-ray photoelectron spectroscopy suggested that the C/O ratio is not determinant for conduction. The better-reduced films had transmittances ca. 85% with sheet resistances around 103 ohm/sq, making them feasible as transparent electrodes. Finally, a short discussion about location of GO/rGO in organic solar cells is presented.
Graphene oxide, reduced graphene oxide, Ecoflex®,, organic solar cells, flexible devices.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India