Concentration-dependent electrochemical synthesis of quantum dot and nanoparticles of copper and shape-dependent degradation of methyl orange

Kalawati  Saini1*, Rajaya Shree Pandey2

1Miranda House, Department of Chemistry, University of Delhi, New Delhi 110007, India

2 Department of Chemistry, University of Rajasthan, Jaipur, Jaipur 302004, India

Adv. Mater. Lett., 2017, 8 (11), pp 1080-1088

DOI: 10.5185/ amlett.2017.1663

Publication Date (Web): Aug 05, 2017

E-mail: kalawati.saini@mirandahouse.ac.in

Abstract


Quantum dot of copper (Cu) and nanoparticles of copper and copper oxide (Cu2O, 6CuOCu2O, Cu3O4) were synthesized by electrochemical route using the tri-sodium citrate (TSC) and ascorbic acid as a capping and reducing agent. The synthesis was done at 3.2 V, 311 K and 15 V, 373 K using copper rod as a working electrode and platinum wire as a reference electrode. The electrochemical set up was kept under inert nitrogen-purged conditions. Cu nanoparticles were synthesized in large-scale for the first time by direct dissolution of Cu2+  into the solution of capping agent from copper electrode in the electrochemical cell. Nanoparticles were characterized by using UV–visible absorption spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. High resolution TEM pictures showed the formation of different shapes of nanostructures such as spherical, dendrites and leaf-shape respectively. The copper nanoparticles in presence of 200 mM of ascorbic acid were obtained with sizes of 2.10 - 4.81 nm in spherical shape and 24.5 - 49.4 nm with 2.88 mM of ascorbic acid. At lower concentration, the particles were also obtained in leaf-shape with ascorbic acid. The leaf shape was also obtained with 250 mM of TSC. This new kind of synthesis method shows the excellent stability compared with that of another chemical method of copper nanoparticles. These particles were used for degradation of methyl orange. The kinetic study of methyl orange with leaf shape particle capping via TSC shows complete degradation of methyl orange in 120 min. 

Keywords

Copper nanoparticles, tri-sodium citrate (TSC), direct dissolution, working electrode, platinum wire.

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment


Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  


The Cause of 100-year Low Carbonated Concrete of the Bridge 


Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections


Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends


Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method


Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane


Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 


Vilsmeier-Haack Transformations under Non Classical Conditions


New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen


An Assessment of Tribological Characteristics under different Operating Condition


Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation


Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites


Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM