Research of plastic and wood raw wastes recovery

Peter Kri

Institute of Manufacturing Systems, Environmental Engineering and Quality Management, Faculty of Mechanical Engineering, Slovak University of Technology, Nám. Slobody 17, Bratislava, 812 31, Slovakia

Adv. Mater. Lett., 2017, 8 (10), pp 983-986

DOI: 10.5185/amlett.2017.1587

Publication Date (Web): Jul 22, 2017

E-mail: peter.krizan@stuba.sk

Abstract


The main aim of this paper is to present the research findings regarding the recovery possibilities of plastic and wood raw wastes. One of the recovery possibilities for mentioned raw materials is production of waste raw materials based wood-plastic composites (WPC). Lonely production process is influenced by technological and raw material parameters (type of raw material and particle size) and thus the final quality and mechanical properties of WPCs have to be determine. This paper also presents the results of realized experimental research which dealt with the determination of relationship between material parameters and mechanical properties during production of WPCs. The main goal of presented paper is to determine the mutual interaction between mechanical properties, type of the plastic matrix used in WPC, wood/plastic concentration ratio and particle size of wood sawdust used in WPC. In this paper the authors also comparing mechanical properties of WPCs based on recycled and original plastics. As a plastic matrix 100 % original HDPE and recycled HDPE originating from lids of PET bottles was used. Obtained research findings can be very helpful at WPCs production and shown the possibility of using also waste raw materials for WPC products, and thus increase the environmental responsibility with the environment protection.

Keywords

Material recovery, WPC, waste, mechanical properties, HDPE, particle size.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM