Two-dimensional NiTe nanosheets anchored on three-dimensional nickel foam as high-performance catalyst for electrochemical water oxidation 

Yibing Li, Chuan Zhao

School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia

Adv. Mater. Lett., 2017, 8 (9), pp 916-921

DOI: 10.5185/amlett.2017.1669

Publication Date (Web): Jun 04, 2017

E-mail: chuan.zhao@unsw.edu.au

Abstract


Development of efficient and affordable electrocatalysts towards water oxidation is important for the large-scale production of hydrogen. Herein, for the first time, we report a two-dimensional (2D) ultrathin NiTe nanosheets as a highly effective catalyst for electrochemical oxygen evolution reaction (OER) via a facile one-pot in-situ hydrothermal approach by using three-dimensional (3D) nickel foam (NF) as both catalyst support and source of nickel. The morphology, electrochemical active surface area (ECSA) and the catalytic activity can be easily engineered by the reaction conditions. The prepared 2D NiTe ultrathin nanosheets have large number of exposed active sites and 3D hierarchical porous structure, which offer superior activity for water oxidation. The electrode only needs an overpotential of 410 mV to afford an extraordinarily high current density of 300 mA cm-2 and exhibits excellent long-term water catalysis durability. This facile approach for preparation of highly active ultrathin NiTe catalyst is novel and applicable to a wide range of functional materials for various applications including catalysis, energy conversion and energy storage. 

Keywords

NiTe, 2D ultrathin nanosheet, oxygen evolution reaction, electrochemical active surface area (ECSA)

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM