Influence of the temperature conditions of the graphene oxide synthesis on graphene oxide – induced fluorescence quenching of ssDNA 

T. E. Timofeeva*, G. N. Aleksandrov, A. V. Kuznethov, N. R. Maksimova, S. A. Smagulova

North-Eastern Federal University, Yakutsk, 677000, Russia

Adv. Mater. Lett., 2017, 8 (9), pp 905-909

DOI: 10.5185/amlett.2017.1589

Publication Date (Web): Jun 04, 2017

E-mail: titamara2013@mail.ru

Abstract


Graphene oxide (GO) is the high-biocompatible, good aqueous dispersible and low-cost material. Fluorescence quenching and adsorption capacity of GO, different affinity of single-stranded and double-stranded DNA molecules to GO are used to design GO-based fluorescent sensors to detect complementary single stranded DNA. In this work, in the framework of the development of graphene oxide-based test systems for the diagnosis of point mutations in DNA, we study fluorescence quenching efficiency of GO. The graphene oxides were prepared by the modified Hummers method at different synthesis conditions and were characterized. During the study, it was found that the reaction temperature is the most dominant parameter to control GO properties. GO suspension synthesized at 750C of the reaction mixture showed the most high fluorescence quenching efficiency. Basing on XPS O1s, FT- IR spectra analysis, on data of the fluorescence emission spectra of dye-labeled DNA in the presence of various concentrations of GO it is found the effect of  oxygen  functional  groups  such  as  carboxyl,  phenol,  carbonyl,  and  epoxy on the efficiency of fluorescence quenching by GO. These results will be useful for in-depth studies of oligonucleotides and GO interaction and opens new opportunities for sensitive detection of biorecognition events.

Keywords

Graphene oxide nanoplates, fluorescence quenching, FssDNA, aqueous suspensions of GO, oxygen-containing functional groups

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM