Phase selective growth of Ge nanocrystalline films by ionized cluster beam deposition technique and photo-oxidation study                           

S. Mukherjee1, A. Pradhan1, T. Maitra2, S. Mukherjee2, A. Nayak2, S. Bhunia1*

1Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF,  Bidhannagar, Kolkata-700064, India

2Department of Physics, Presidency University, 86/1, College Street, Kolkata-700073, India

Adv. Mater. Lett., 2017, 8 (9), pp 891-896

DOI: 10.5185/amlett.2017.1462

Publication Date (Web): Jun 04, 2017

E-mail: satyaban.bhunia@saha.ac.in

Abstract


In this paper, we report the possibility of phase-selective growth of Ge nanocrystals by changing the kinetic energy of the clusters in an ionised cluster beam deposition system. Typically, the films are of mixed phase of normal cubic and high energy tetragonal structures, the relative proportion of which could be controlled by controlling the ionisation and applied accelerating potential as has been confirmed from Raman spectroscopic study. The films deposited using neutral clusters showed higher yield of the tetragonal phase with nanocrystallites of diameter ~7 nm as evidenced from HRTEM data. The optical bandgap of the nanocrystals were observed to be blue shifted upto 1.75 eV compared to the bulk Ge attributing to the presence of Ge tetragonal ST-12 phase and the resulted quantum confinement effect inside the nanocrystals. The tetragonal-rich films were further studied by controlled photo-oxidation to tune their optical band gap. A visible photoluminescence due to excitonic transitions have been observed from the as-grown Ge film enriched in tetragonal phase with average crystallite size ~7 nm. The photoluminescence peak was further blue shifted after the course of photo-oxidation due to reduced nanocrystallite size. 

Keywords

Ge Nanocrystals, ionized cluster beam, tetragonal, diamond-like, photo-oxidation, photoluminescence

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM