ATA and TA coated superparamagnetic iron oxide nanoparticles: Promising candidates for magnetic hyperthermia therapy

Ganeshlenin Kandasamy, Atul Sudame, Dipak Maity*

Nanomaterials Lab, Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Dadri -201314, UP, India

Adv. Mater. Lett., 2017, 8 (8), pp 873-877

DOI: 10.5185/amlett.2017.1730

Publication Date (Web): May 23, 2017

E-mail: dipak.maity@snu.edu.in

Abstract


In recent times, superparamagnetic iron oxide nanoparticles (SPIONs) are widely used as heating agents in magnetic hyperthermia therapy (MHT) to kill malignant cells in cancer treatments, which is mainly due to their excellent magnetic properties and biocompatibility. However, it is still a challenge to coat SPIONs with suitable surfactants and to apply an appropriate alternative magnetic field (AMF) at specific frequency to achieve enhanced heating effects in MHT. In this work, the as-synthesized novel short-chain surfactants (i.e., amino-terephthalic acid (ATA) and terephthalic acid (TA)) coated hydrophilic SPIONs are synthesized and subsequently involved in calorimetric hyperthermia studies to investigate their intrinsic heating capability by varying (i) their concentrations from 1 - 8 mgFe/ml and (ii) AMFs at different frequencies (263.2 – 752.39 kHz) while achieving the temperature above 42 °C – therapeutic hyperthermia temperature. It is found that the heating rate of TA-SPIONs is faster as compared to ATA-SPIONs on exposure to the AMF. However, the highest specific absorption rate (SAR) value of 129.80 W/gFe is attained for ATA-SPIONs with 2 mgFe/ml concentration on exposure to AMF at 752.39 kHz. Thus, ATA/TA coated SPIONs are very promising agents for magnetic hyperthermia and could be further investigated in in vitro/in vivo cancer treatments.

Keywords

Terephthalic acid, amino-terephthalic acid, hydrophilic SPIONs, magnetic hyperthermia, specific absorption rate

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM