Cover Page June-2017-Advanced Materials Letters

Advanced Materials Letters

Volume 8, Issue 6, Pages 723-734, June 2017
About Cover

New effective luminescent materials based on the Sm-doped borate glasses

Bohdan V. Padlyak1,2*, Ihor I. Kindrat1, Radoslaw Lisiecki3, Volodymyr T. Adamiv2, Ihor M. Teslyuk2  

1Division of Spectroscopy of Functional Materials, Institute of Physics, University of Zielona Góra,  4a Szafrana str., 65-516 Zielona Góra, Poland

2Department of Optical Materials, Vlokh Institute of Physical Optics, 23 Dragomanov str., 79-005 Lviv, Ukraine

3Department of Spectroscopy of Laser Materials, Division of Optical Spectroscopy,  Institute of Low Temperature and Structure Research Polish Academy of Sciences, 2 Okólna str, 50-422 Wrocław, Poland

Adv. Mater. Lett., 2017, 8 (6), pp 723-734

DOI: 10.5185/amlett.2017.1436

Publication Date (Web): Apr 30, 2017



The spectroscopic and radiative properties of the Sm-doped borate glasses with Li2B4O7, LiKB4O7, CaB4O7, and LiCaBO3 basic compositions as new luminescent materials have been investigated and analysed. The borate glasses of high chemical purity and optical quality, doped with Sm2O3 in amounts of 0.5 and 1.0 mol. % were obtained from corresponding polycrystalline compounds in the air atmosphere using standard glass synthesis technology. The spectroscopic properties of obtained Sm-doped glasses were studied using electron paramagnetic resonance (EPR), optical absorption, photoluminescence, and decay kinetics techniques. The Judd–Ofelt theory had been used for analysis of the optical absorption spectra and calculation of the phenomenological intensity parameters (Ω2, Ω4, Ω6). Radiative properties such as transition probabilities (Arad), branching ratios (βexp and βrad), stimulated emission cross-sections (σe), and radiative lifetimes (τrad) were estimated for 4G5/26HJ (J = 5/2, 7/2, 9/2, and 11/2) emission transitions of the Sm3+ ions in the Li2B4O7:Sm, CaB4O7:Sm, and LiCaBO3:Sm glasses containing 1.0 mol. % Sm2O3. The luminescence kinetics of Sm3+ centres in the investigated glasses are characterised by a single exponent decay with typical lifetimes, which depend on the basic glass composition and Sm impurity concentration. Experimental lifetimes (τexp) have been compared with those calculated (τrad) and quantum efficiencies (η) of the Sm3+ emission transitions were estimated. The calculated high quantum efficiencies (~ 80 %) and measured high quantum yields of luminescence (~ 14 – 21 %) clearly show that the investigated glasses belong to very promising materials for luminescent and laser applications.


Borate glasses, Sm3+ ions, optical absorption, luminescence spectra, Judd&ndash,Ofelt analysis, luminescence kinetics, radiative properties.

Current Issue

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Previous issues

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Upcoming Congress

Knowledge Experience at Sea TM