Cover Page June-2017-Advanced Materials Letters

Advanced Materials Letters

Volume 8, Issue 6, Pages 717-722, June 2017
About Cover

Mechanical behavior and fracture surface characterization of liquid-phase sintered Cu-Sn powder alloys

Ahmed E. Nassef1, A.I. Alateyah2, Medhat A. El-Hadek1, W. H. El-Garaihy2, 3*

1Department of Production & Mechanical Design, Faculty of Engineering, Port-Said University, 23 July St., Port-Said, 42523, Egypt

2Mechanical Engineering Department, Unizah College of Engineering, Qassim University, King Abdulaziz St., 51911, Kingdom of Saudi Arabia

3Mechanical Engineering Department, Faculty of Engineering, Suez Canal University, El Salam district, Ismailia 41522, Egypt

Adv. Mater. Lett., 2017, 8 (6), pp 717-722

DOI: 10.5185/amlett.2017.1485

Publication Date (Web): Apr 30, 2017



In this study, elemental Cu and Sn powder were mechanically mixed forming different Cu-Sn alloys. To ensure uniformity of the particle shapes, the Cu, and Sn were mechanically milled and mixed in an agate rock mortar, with high energy ball mill for half an hour, with different weight ratios according to the composition design. The milling of the powders resulted in uniform sphere-like particles for Cu–Sn alloys. Hot compaction was performed in a single acting piston cylinder arrangement at room temperature. All hot pressed MMCs were heat-treated at about 550°C to allow the atoms to diffuse randomly into a uniform solid solution, as liquid phase sintering. Vickers micro-hardness measurements were carried out for the hot-pressed Cu–Sn alloys. Cylindrical specimens of aspect ratio of ho/do = 1.5 were tested under frictionless conditions at the compression platen interface. Charpy transverse rupture strength had been used to determine the fracture strength of the different Cu-Sn alloys. Fracture surface features of the different Cu-Sn alloys were characterized using scanning electron microscopy. It had been found that, the 85%Cu–15% Sn alloy revealed an increase of hardness values, a decrease of the yield strength, and an increase in the impact energy by 26.2, 23, and 18.7%; respectively, compared with the Sn-free alloy. The Cu-Sn alloys showed an apparently classical inclined fracture surface, at about 45o with the applied stress axis, which was similar to what’s obtained for a diversity of hard metals. 


Cu-Sn alloy, metal matrix composite, strengthening, fracture mechanics.

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM