Bilayered vanadium oxide as the host material for reversible beyond lithium ion intercalation Bilayered vanadium oxide as the host material for reversible beyond lithium ion intercalation
Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
Adv. Mater. Lett., 2017, 8 (6), pp 679-688
DOI: 10.5185/amlett.2017.1536
Publication Date (Web): Apr 30, 2017
Copyright © IAAM-VBRI Press
E-mail: epomeran@coe.drexel.edu
Bilayered vanadium oxide has emerged as a high-performance cathode material for beyond lithium ion (BLI) battery systems including Na-ion batteries, Mg-ion batteries, and pseudocapacitors. The major structural feature of bilayered V2O5 that makes it attractive for such applications is its large interlayer spacing of ~10-13 Å. This spacing can be controlled via the interlayer content, which can consist of varying amounts of structural water and/or inorganic ions, resulting in numerous chemical compositions. Further, bilayered V2O5 can be synthesized via a number of different methods, resulting in morphologies that include xerogel, aerogel, thin films, and 1-D nanostructures. The interlayer spacing, content, and material morphology can all affect the electrochemical performance of this materials family, and in this review, we discuss the role of each of these factors in the reversible cycling of charge-carrying ions beyond lithium. The different bilayered V2O5 synthesis methods and resulting compositions are reviewed, and important structure-property-performance insights into the reversible insertion/ extraction of larger/multivalent ions into the bilayered V2O5 structure are highlighted.
Layered materials, beyond lithium ion batteries, intercalation, bilayered vanadium oxide.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India