Influence of oxygen ions irradiation on the optical properties of photoanodes for dye sensitized solar cell

Amrik Singh1*, Devendra Mohan2, Dharmavir S. Ahlawat1, Sandeep Chopra3

1Material Science Lab., Department of Physics, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India

2Laser Laboratory, Department of Applied Physics, Guru Jambheshwar University of Science &Technology, Hisar 125001, Haryana, India

3Inter-University Accelerator Centre, New Delhi 110067, India

Adv. Mater. Lett., 2017, 8 (4), pp 565-571

DOI: 10.5185/amlett.2017.6518

Publication Date (Web): Mar 15, 2017

E-mail: amrik23kuk@gmail.com

Abstract


Indium Tin Oxide (ITO) coated glass acts as a substrate for photoanode of Dye Sensitized Solar Cells (DSSCs). The ITO substrate was irradiated by oxygen ion with different fluence (1x1011 and 1x1012 ions/cm2) at 100 MeV energy. The TiO2 films were also subjected with same ion irradiation at 100 MeV of energy with fluence of 1x1011 ions/cm2 and 5x1012 ions/cm2. At 100 MeV energy of O7+ ion the electronic and nuclear energy loss for TiO2 film have been measured 7.38x10-1 KeV/nm and 3.8x10-4 KeV/nm respectively.  However, the electronic and nuclear energy loss of ion irradiation for ITO substrate were 7.4x10-1 KeV/nm and 4.06x10-4 KeV/nm respectively. Similarly longitudinal/ lateral straggling of ITO and TiO2 have been found 3.87 μm/2.50 µm and 3.62 µm/1.14 μm respectively. Further, the structural and optical properties of these samples were monitored by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible spectroscopy. It was found that oxygen ion (O7+) irradiation of ITO film has slightly changed the crystallinity and transmission decreases. Furthermore, the particle size of TiO2 thin film has been obtained 80 nm corresponding to (101) plane of XRD pattern. In the case of ITO thin film the crystallite size and band gap changes from 62.35 nm to 53.89 nm and 3.993 eV to 3.971 eV at 1x1012 ions/cm2 respectively. Moreover this paper is also reporting that irradiation by swift heavy ion has changed the transmission of the ITO films, and its values decreases as compared to pristine (ITO) which degraded the performance of DSSC. Consequently, a very small value of absorbance is reported for ITO film. However, the absorbance of TiO2 film has found to increase with irradiation of oxygen ion at fluence of 1x1012 ions/cm2 and decreased at 5x1012 ions/cm2. It is also confirmed that the absorbance of TiO2 film and TiO2/ITO photoanode increases with irradiation of oxygen ion at fluence of 1x1012 ions/cm2 and decreased at 5x1012 ions/cm2.  The band gap values of TiO2 thin film were obtained to have a change from 3.37 eV (for pristine) to 3.44 eV at 5x1012 ions/cm2. But the decrease in band gap is also found 3.17 eV at fluence of 1x1012 ions/cm2. However, N719 dye loaded O7+ (1x1012 ions/cm2) irradiated TiO2 film show high absorption as compared to other samples. Thus the dose of O7+ irradiation at fluence 1x1012 ions/cm2 may fabricate more efficient DSSC and consequently future prospective of such type of photoanode materials for dye sensitized solar cells seems to be bright.

Keywords

Swift heavy ion irradiation, energy losses, dye-sensitized solar cells, optical properties of TiO2 /and ITO thin films, TiO2 / ITO photoanode.

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment


Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  


The Cause of 100-year Low Carbonated Concrete of the Bridge 


Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections


Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends


Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method


Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane


Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 


Vilsmeier-Haack Transformations under Non Classical Conditions


New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen


An Assessment of Tribological Characteristics under different Operating Condition


Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation


Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites


Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM