Sustainability of aligned ZnO nanorods under dynamic shock-waves

M. Devika1*, N. Koteeswara Reddy2, V. Jayaram3, K. P. J. Reddy1

1Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India

2Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India

3Department of Solid-Sate and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

Adv. Mater. Lett., 2017, 8 (4), pp 398-403

DOI: 10.5185/amlett.2017.6890

Publication Date (Web): Mar 14, 2017

E-mail: devikareddy_81@rediffmail.com

Abstract


In this article the sustainability of ZnO nanostructures under dynamic shock waves has been investigated. ZnO nanorods were synthesized on stainless steel (SS) substrates and exposed to shock waves in an inert atmosphere. The impact of shock waves on physical properties of ZnO nanostructures was analyzed. ZnO nanostructures grown on SS substrates exhibit excellent sustainability over different shock waves generated temperatures and pressures. The crystal structure and surface morphology of shock waves treated ZnO nanorods remain the same as untreated ones and however, the chemical stoichiometry and light emission properties are significantly changed. From these investigations it is emphasized that ZnO nanostructures could be adopted for various applications in space engineering technology where the surrounding temperature and pressure is below 8000 K and 2 MPa.

Keywords

ZnO nanostructures, dynamic shock waves, sustainability of nanostructures, solution growth, spray pyrolysis, chemical solution growth.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM