Effect of the precursor graphite on the structure and morphology of graphite oxide and reduced graphene oxide

Demudu B. Dommisa, Raj K. Dash*

School of Engineering Sciences and Technology University of Hyderabad, Hyderabad, TS, 500046, India

Adv. Mater. Lett., 2017, 8 (3), pp 315-321

DOI: 10.5185/amlett.2017.1486

Publication Date (Web): Jan 28, 2017

E-mail: rkdse@uohyd.ernet.in

Abstract


In this work the effect of the precursor graphite on the structure and morphology of the graphene oxide and reduced graphene oxide are investigated by considering three different sizes source graphite such as 2-15, <45 and 170-840μm respectively. All the three graphite were oxidized by Modified Hummer’s method and further reduced by hydrazine hydrate by maintaining same synthesis conditions. The results demonstrated that the oxidation process is size dependent of the source graphite.The results revealed that smaller size graphite is fully oxidised as compared to larger sizes and also functionalized more. Few layers (less than 4-5) crystalline, less disorder and unfolded reduced graphene oxides are obtained when smallest size graphite is used as the source material. The water molecules present in the graphene oxide synthesised from larger size graphite as source material are higher and that can lead to the the occurrence of polycrystalline in structure, more disorder and wrinkled or folding reduced graphene oxide. Therefore, this study can open a new pathway to synthesis more crystallinity, less disorder and wrinkled free or unfold reduced graphene oxide for several potential applications.

Keywords

Size effect, modified hummer&rsquo,s method, graphene oxide (GO), reduced graphene oxide (RGO).

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM