Spin transport in graphene monolayer antiferromagnetic calculated using the Kubo formalism
Departamento de Física e Matemática, Centro Federal de Educação Tecnológica de Minas Gerais, 30510-000, Belo Horizonte, MG, Brazil
Adv. Mater. Lett., 2017, 8 (3), pp 283-287
DOI: 10.5185/amlett.2017.7045
Publication Date (Web): Jan 28, 2017
Copyright © IAAM-VBRI Press
E-mail: lslima@des.cefetmg.br
We have employed the Dirac's massless quasi-particles together with the Kubo's formalism of the linear response to study the spin transport properties by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC currents of this system, which is a relativistic electron plasma. Our results show a superconductor behavior for the electron transport with the AC conductivity tending to infinity in the limit ω → 0. This superconductor behavior for the electron transport in the graphene is similar to one recently obtained theoretically for the spin transport in the quantum frustrated Heisenberg antiferromagnet in the honeycomb lattice, verifying so a similarity between these two different kinds of transport what can generate futures applications in the modern electronic.
Spin transport, graphene, monolayer, two-dimensional, honeycomb lattice, frustrated, antiferromagnet.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India