Lamellar structures from graphene nanoparticles produced by anode oxidation

Mykola Kartel1*, 2,  Yuriy Sementsov2, Galyna Dovbeshko3, Liudmyla Karachevtseva4,  Stanislav Makhno2, Tatiana Aleksyeyeva2, Yulia Grebel’na2, Volodymyr Styopkin3,  Wang Bo2, Yuriy Stubrov4

1Department of Nanoporous and Nanosized Carbon Materials, Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naymov Street, Kyiv, 03164 Ukraine

2Transportation and Logistics College, Ningbo University of Technology, 201 Fenghua Road,  Ningbo, 315211, China

3Department of Physics of Biological Systems, Institute of Physics, NAS of Ukraine,  44 Prospect Nauki, Kyiv, 03028, Ukraine

4Department of Photonic Crystals, Lashkaryov Institute of Semiconductor Physics,  NAS Ukraine, 41 Prospect Nauki, Kyiv, 03028, Ukraine 

Adv. Mater. Lett., 2017, 8 (3), pp 212-216

DOI: 10.5185/amlett.2017.1428

Publication Date (Web): Jan 28, 2017

E-mail: nikar@kartel.kiev.ua

Abstract


An effective cheap method for graphene nanoparticles (GNP) production with controlled size distribution was developed based on anodic oxidation of condensed exfoliated graphite. As it is shown, under certain condition the GNP could be self-organized into a 3-dimensional structure that could be important for understanding of the GNP interaction with different type of surfaces. Based on this feature, a synthesis method for preparation of composites containing GNP and polychlorotrifluoroethylene (PCTFE) was developed. Raman spectroscopy of GNP and GNP/PCTFE revealed a good crystalline structure of synthesized nanoparticles. Laser correlation spectroscopy and electron microscopy studies show that average size of particles ranges from tens to thousands nanometers and thickness consists ten or more graphene layers. We found that conductivity of GNP is of electronic nature. The real and imaginary parts of complex permittivity in the microwave range and electric conductivity at low frequencies were found to be a nonlinear function of a volume content of GNP in GNP/PCTFE composite. It could be explained by a presence of the percolation threshold equals to 0.5 wt.%. Low percolation threshold of GNP/PCTFE composite as self-organized 3D structure, could be a certificate of high surface energy for the particles strongly interacting with the surrounding media.

Keywords

Graphene, lamellar structure, synthesis, properties.

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment


Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  


The Cause of 100-year Low Carbonated Concrete of the Bridge 


Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections


Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends


Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method


Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane


Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 


Vilsmeier-Haack Transformations under Non Classical Conditions


New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen


An Assessment of Tribological Characteristics under different Operating Condition


Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation


Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites


Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM