Environmental Systems Analysis, Chalmers University of Technology, Rännvägen 6, Gothenburg, 41296, Sweden
Adv. Mater. Lett., 2017, 8 (3), pp 187-195
DOI: 10.5185/amlett.2017.1413
Publication Date (Web): Jan 28, 2017
Copyright © IAAM-VBRI Press
E-mail: rickard.arvidsson@chalmers.se
Environmentally benign production processes are required in order to ensure a sustainable graphene supply. Life cycle assessment (LCA) is an established method for assessing life cycle environmental impacts of products and production processes. In this paper, life cycle impacts of five production processes for graphene are reviewed: Chemical reduction of graphite oxide, ultrasonication exfoliation, thermal exfoliation, chemical vapour deposition, and epitaxial growth. The reduction step, including the production of the reduction agent hydrazine, was the main contributor for most impacts in the chemical reduction of graphite oxide. Production of the solvent diethyl ether was the step that contributed the most for ultrasonication exfoliation, so solvent recovery is advised. For thermal exfoliation, microwave heating was the step that contributed the most to environmental impacts of graphene nanoplatelets. For chemical vapour deposition, the methane feedstock production step contributed the most, but methane recovery could reduce the energy use considerably. The environmental impacts of epitaxial graphene were dominated by electricity use for production of the silicon wafer substrate, which means that a ‘greener’ electricity mix can reduce impacts considerably. Overall, it is shown that graphene need not be an energy-intensive material compared to conventional materials used in society today.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study