1Research Institute of Medical Materials, Tomsk State University, ul. 19 Gv. Divizii 17, Tomsk, 634045, Russia
2Material Research Laboratory, Kang & Park Medical Co., 48 Jungsimsangeob-2 ro, Cheongju 28119, South Korea
3School of Material Science and Engineering, University of Ulsan, 93 Daehak-ro, Ulsan, 44610, South Korea
Adv. Mater. Lett., 2017, 8 (2), pp 122-127
DOI: 10.5185/amlett.2017.7023
Publication Date (Web): Dec 27, 2016
Copyright © IAAM-VBRI Press
E-mail: tc77@mail2000.ru
Within the wide family of shape memory alloys (SMAs), TiNi-based alloys are characterized by unique characteristics, with good workability in the martensite phase and good resistance to corrosion and fatigue. In the nearest future, TiNi-based SMAs are expected the second birth to begin regarding their practical application, especially in creating a new material generation showing enhanced characteristics for clinical goals. Such a kind of expectations is naturally supposed to make a search among alloying elements for TiNi-based SMAs, as well as studies of adjacent effects in order to improve material properties. The objective of the work is to investigate the effect of heat treatment on the structure and properties of the quaternary Ti50Ni47.7Mo0.3V2 SMA, as potentially promising for medical devices. Specimens were prepared and annealed at 723, 923, 1123 K for 1 h. It was found that the studied alloy was in a multiphase state: TiNi-based intermetallic in three crystallographic modifications (austenite B2-phase and martensitic R- and B19¢structures) and secondary Ti2Ni(V) phase. The increase of the annealing temperature doesn't affect the martensite transformation (MT) sequence B2«R«B19′, but leads to a growth in lattice parameter of the parent phase. The most remarkable effect on the studied alloy was at 723 K. Volume fraction of Ti2Ni(V) precipitates in the structure was also maximum. It owes their presence to the shift of the MT points toward the lower temperature range. The temperature vs resistivity r(T) curves show a characteristic shape, which is typical for TiNi-based SMAs with a two-step nature of the B2«R«B19′ MT.
TiNi-based alloy, martensite transformation, characteristic temperatures, heat treatment.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study