Cover Page February-2017-Advanced Materials Letters

Advanced Materials Letters

Volume 8, Issue 2, Pages 89-100, February 2017
About Cover


Chitosan-mediated fabrication of metal nanocomposites for enhanced biomedical applications

Faruq Mohammad*, Hamad A. Al-Lohedan, Hafiz N. Al-Haque

Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Adv. Mater. Lett., 2017, 8 (2), pp 89-100

DOI: 10.5185/amlett.2017.6925

Publication Date (Web): Dec 27, 2016

E-mail: fmohammad@ksu.edu.sa

Abstract

Hybrid materials based on metals and natural polymers are a promising class of nanocomposites; there is an increasing interest in metal nanoparticles (NPs) due to some fascinating characteristics associated with their nanosizes such as optical, conducting, catalytic, mechanical, sensing and superparamagnetic properties. Despite these favorable properties, the natural tendency of NPs for aggregation, high reactivity due to surface charges, and high rate of toxicity are limiting their applicability in biomedical sector. Chitosan, a naturally available amino polysaccharide biopolymer obtained from the exoskeleton of crustaceans (crabs and shrimp) and cell walls of fungi, displays unique polycationic, porous, chelating, bioadhesive and film-forming properties. The in-built characteristics of chitosan biopolymer can be utilized to alter the negative shades of metal NPs, thereby enhancing the applications in many different areas. The incorporation of chitosan significantly affects the steric stabilization of metal colloids, creates extra functional groups for biomolecule conjugation, renders the NPs suitable for bio-markers, protects metal ions from further oxidation/reduction by means of polymer coordination and has a control over toxicity. Thus by taking advantage of the additional features offered by the combination of chitosan and metal NPs, this report is designed to provide an overview about the metal NPs type, synthesis and applications in bioengineering and biomedical sector. Starting with the influencing properties due to their combination, we further reviewed the literature related to chitosan and metal NPs applicable for medicine with a specific focus on cancer diagnosis and treatment, advanced drug delivery, tissue engineering and surgical aids, to mention some.

Keywords

Chitosan, metal nanoparticles, composites, biopolymers, biomedical applications.

Previous issues

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Upcoming Congress

Knowledge Experience at Sea TM