Cover Page September-2016-Advanced Materials Letters

Advanced Materials Letters

Volume 7, Issue 9, Pages 719-722, September 2016
About Cover


Synthesis And Characterisation Of Polyaniline (PAni) Membranes For Fuel Cell

Franco D.R. Amado*1,2, Satheesh Krishnamurthy2

1PROCIMM, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus - Bahia - Brasil

2Materials Engineering, Department of Engineering and Innovation, The Open Universit,Milton Keynes, MK7 6AA, United Kingdom  

Adv. Mater. Lett., 2016, 7 (9), pp 719-722

DOI: 10.5185/amlett.2016.6127

Publication Date (Web): Jul 09, 2016

E-mail: fdramado@uesc.br

Abstract

Over the past decade or so, alternative energy plays a pivotal role in addressing challenges posed by nature. Polymer electrolyte membrane fuel cell is one of the promising alternative energy and there has been significant research and technological investments done in this field. The key information and future prospective of the field is energy conversion and storage, both of which are essential in order to meet the challenges of global warming and the limited fossil fuel supply. However, polymer membrane in particular plays a crucial role in advancing this technology further. The utilization of conducting polymers in manufacturing membranes combining their electrochemical properties along with mechanical properties is of primary importance to enhance the efficiency of this system. In the present study blends of high impact polystyrene (HIPS) and polyaniline (PAni) were obtained with the aim of producing membranes for fuel cell. HIPS and PAni were dissolved in tetrachloroethylene, a common solvent for both materials. After dissolution, PAni was dispersed in an HIPS polymeric matrix. The membranes were molded on to glass plates using a laminator to keep thickness constant, and the solvent evaporated slowly for 24 h under room temperature. The amount of polyaniline used was 10 and 20 % weight. The electronic and structural properties were carried out using X-ray photoelectron spectroscopy (XPS), Thermogravimetric Analysis (TGA) Raman spectroscopy, Scanning electronic microscopic (SEM). The analysis indicate that PAni incorporation and its dispersion into the polymeric matrix modifies the membranes properties and show improvement in efficiency.

Keywords

HIPS, fuel cell, membranes, polyaniline, properties.

Current Issue

Wearable Healthcare Devices


Nano-Graphene and Its Derivatives for Fabrication of Flexible Electronic Devices: A Quick Review


Natural Fibers as Viable Sources for the Development of Structural, Semi-Structural, and Technological Materials – A Review


Geometrical Characterization of Wire-and-Arc Additive Manufactured Steel Element


Plasma Activated Water Generation and its Application in Agriculture


Development of Advanced Electrode Materials on Porous Silicon for Micropower Formic Acid-Oxygen Fuel Cells 


Water Management within Tragacanth gum-g-polyitaconic Acid Hydrogels


Synthesis and Characterization of Humic Acid-coated Fe3O4 Nanoparticles for Methylene Blue Adsorption Activity


Synthesis and characterization of thermally stable flame retardant thermoplastic polyphosphazenes


Synthesis of Rod-coil Molecules bearing Oligo-Phenylene Vinylene Motifs: Effect of PEO Chain Lengths on the Evolution of Nanostructures Morphology and their Photophysical Properties


Dielectric Properties of Cu based Polymeric Composites in X-band of Microwave Frequency


Critical Association Concentration of Dansyl-Poly (acrylic acid) Synthetized by Redox Polymerization Followed by an Esterification in Aqueous Solution: Spectrophotometric and Tensiometric Studies


Influence of Iron Doping on Structural and Optical Properties of Nickel Oxide Nanoparticles


Upcoming Congress

Knowledge Experience at Sea TM