Cover Page September-2016-Advanced Materials Letters

Advanced Materials Letters

Volume 7, Issue 9, Pages 697-701, September 2016
About Cover

Synthesis Of Nanostructured Tungsten Oxide By Thermal Oxidation Method And Its Integration In Sensor For VOCs Detection

Bhagaban Behera, Sudhir Chandra*

Centre f­or Applied Research in Electronics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

Adv. Mater. Lett., 2016, 7 (9), pp 697-701

DOI: 10.5185/amlett.2016.6101

Publication Date (Web): Jul 09, 2016


In this study, tungsten oxide nanorods have been grown by thermal oxidation of tungsten film deposited on oxidized silicon substrates for gas sensing applications. Tungsten film of thickness 100 nm was deposited by sputtering method and thermally oxidized in atmospheric ambient to synthesize nanorods. The morphology and crystal structure of tungsten oxide nanorods were characterized by scanning electron microscopy and X-ray diffraction. Also, crystal structure was verified using Raman techniques. Surface chemical composition of nanorods was analyzed using X-ray photoelectron spectroscopy. Results revealed that 100 nm film of tungsten, oxidized at 450 oC, produces nanorods of WO3 having monoclinic structure with diameter ~100 nm and length up to 1µm. Using standard photolithography process, Au/Cr inter digital electrodes were formed and nanorods were synthesized on it for VOCs sensing application. Sensor incorporating WO3 nanorods exhibits very good response to ethanol, methanol and acetone vapors. The sensor response was studied at different operating temperatures for varying concentration of VOCs. The results suggest the sensor has good potential towards gas sensing applications. It is demonstrated that these sensors can detect upto 10 ppm of ethanol vapour concentration when operated at 100 oC temperature.


Tungsten oxide nanorods, thermal oxidation, VOCs.

Previous issues

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Upcoming Congress

Knowledge Experience at Sea TM