Synthesis Of Nanostructured Tungsten Oxide By Thermal Oxidation Method And Its Integration In Sensor For VOCs Detection

Bhagaban Behera, Sudhir Chandra*

Centre f­or Applied Research in Electronics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

Adv. Mater. Lett., 2016, 7 (9), pp 697-701

DOI: 10.5185/amlett.2016.6101

Publication Date (Web): Jul 09, 2016


In this study, tungsten oxide nanorods have been grown by thermal oxidation of tungsten film deposited on oxidized silicon substrates for gas sensing applications. Tungsten film of thickness 100 nm was deposited by sputtering method and thermally oxidized in atmospheric ambient to synthesize nanorods. The morphology and crystal structure of tungsten oxide nanorods were characterized by scanning electron microscopy and X-ray diffraction. Also, crystal structure was verified using Raman techniques. Surface chemical composition of nanorods was analyzed using X-ray photoelectron spectroscopy. Results revealed that 100 nm film of tungsten, oxidized at 450 oC, produces nanorods of WO3 having monoclinic structure with diameter ~100 nm and length up to 1µm. Using standard photolithography process, Au/Cr inter digital electrodes were formed and nanorods were synthesized on it for VOCs sensing application. Sensor incorporating WO3 nanorods exhibits very good response to ethanol, methanol and acetone vapors. The sensor response was studied at different operating temperatures for varying concentration of VOCs. The results suggest the sensor has good potential towards gas sensing applications. It is demonstrated that these sensors can detect upto 10 ppm of ethanol vapour concentration when operated at 100 oC temperature.


Tungsten oxide nanorods, thermal oxidation, VOCs.

Current Issue
The Journey of a Decade to Advancing Materials
Are the Electrospun Polymers Polymeric Fibers?
Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids
Prediction of Long-Term Behavior for Dynamically Loaded TPU
Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory
Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems
Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays
Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process
Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions
The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates
The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film
Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM