$id = '777'
$issue = object(Cake\ORM\Table) {
'registryAlias' => 'Issues',
'table' => 'issues',
'alias' => 'Issues',
'entityClass' => '\Cake\ORM\Entity',
'associations' => [],
'behaviors' => [],
'defaultConnection' => 'default',
'connectionName' => 'default'
}
$article_current = object(Cake\ORM\Table) {
'registryAlias' => 'Articles',
'table' => 'articles',
'alias' => 'Articles',
'entityClass' => '\Cake\ORM\Entity',
'associations' => [],
'behaviors' => [],
'defaultConnection' => 'default',
'connectionName' => 'default'
}
$article = object(Cake\ORM\Entity) {
'id' => (int) 777,
'user_id' => (int) 0,
'volume' => (int) 72,
'volumeno' => (int) 7,
'issuseno' => (int) 1,
'issusemonth' => 'January',
'issuseyear' => '2016',
'title' => '<p>Recycled Plastic Material Properties Defined By Nanoindentation</p>
',
'meta_title' => 'Recycled plastic material properties defined by nanoindentation',
'meta_desc' => 'Recycled plastic material properties defined by nanoindentation',
'meta_keyword' => 'Recycled plastic, thermoplastics, viscoelastic material, nanoindentation, microstructure.',
'alias_name' => 'recycledplasticmaterialpropertiesdefinedbynanoindentation',
'authorname' => '<p>Zdenka Prochazkova<sup>*</sup>, Vlastimil Kralik, Jiri Nemecek, Michal Sejnoha</p>
',
'authorfrontname' => 'Zdenka Prochazkova, Vlastimil Kralik, Jiri Nemecek, Michal Sejnoha',
'authoraffiliation' => '<p><em>Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7, Prague 6, 16629, Czech Republic</em></p>
',
'authoremail' => '<p>E-mail: zdenka.prochakova@fsv.cvut.cz</p>
',
'authorbiography' => '',
'page' => '78-82',
'pagesequence' => '14',
'doi' => '10.5185/amlett.2016.6170',
'articletype' => '1',
'keyword' => '<p>Recycled plastic, thermoplastics, viscoelastic material, nanoindentation, microstructure.</p>
',
'abstractpdf' => null,
'abstractdec' => '<p>Introduction of recycled plastic materials in structural applications such as bridges, retaining walls or railway sleepers requires a proper identification of necessary material properties. Given similarities in the microstructure of various structural elements we limit our attention to beams having a rectangular cross-section. Owing to the manufacturing process the cross-section is represented by a porous-core (inner section) surrounded by a homogeneous material (outer section). The influence of microstructural details on material parameters is examined here with a reference to the elastic Young’s modulus derived from nanoindentation measurements. To identify a gradual evolution of the stiffness of plastic material from the outer section into the core the grid indentation method based on the statistical evaluation of a large number of indentations was adopted. These tests were accompanied by standard static indentation measurements to address also the effect of temperature in the range of 20–40°C. When dealing with these types of recycled plastics, even a 5°C temperature variation leads to a significant change in the material stiffness. In addition, standard macroscopic material properties were measured by tensile tests of samples with and without the porous core and compared with microscopic parameters. The elastic modulus obtained from nanoindentation was found to be ~20 % higher than that provided by the tensile tests. </p>
',
'fullabstractpdf' => '5679805e9c9cf1450803294_fullabstratct.pdf',
'fullabstractdesc' => '',
'supporting_information' => null,
'tocimage' => '',
'received' => '',
'accepted_for_publication' => '',
'checked_for_plagiarism' => 'Yes',
'review_by' => '',
'peer_reviewers_approved_by' => '',
'peer_reviewer_comments' => '',
'editor_who_approved_publication' => '',
'created' => object(Cake\I18n\FrozenTime) {},
'modified' => '2015-12-22 09:54:54',
'sequence' => (int) 13,
'status' => (int) 1,
'published' => (int) 1,
'mostcitedissue' => (int) 0,
'view_counts' => (int) 0,
'count_download' => (int) 0,
'admin_delete' => (int) 0,
'citation_author' => null,
'citation_author_institution' => null,
'last_page' => (int) 0,
'article_html_data' => null,
'refernece' => null,
'[new]' => false,
'[accessible]' => [
'*' => true
],
'[dirty]' => [],
'[original]' => [],
'[virtual]' => [],
'[errors]' => [],
'[invalid]' => [],
'[repository]' => 'Articles'
}
$issue_article = 'Volume 7, Issue 1, Article ID 78-82, January 2016'
$Issues_articles_image = null
$coverimage_artciles = ''
$coverimage_desc = ''
$issue_data = object(Cake\ORM\Entity) {
'id' => (int) 527,
'type' => '21',
'volumenumber' => '12',
'issusenumber' => '3',
'issusemonth' => 'March',
'issuseyear' => '2021',
'pageno' => '21031607-21031615',
'sequence' => (int) 1,
'coverimage_file' => 'March_1609938278.jpg',
'coverimagepdf_file' => null,
'coverimage_desc' => '<p style="text-align: justify;">Development of sustainable energy materials is becoming more and more important to tackle the challenges of energy innovation and technology. It will also act like an appliance for social progress, economic growth, poverty reduction, equity, and environmental sustainability. The cover photo of the March 2021 issue of Advanced Materials Letters is inspired from the 07th point of United Nation’s Sustainable Development Goals, “Ensure access to affordable, reliable, sustainable and modern energy for all” and the agenda of the International Association of Advanced Materials for 2030 decade, "Advancement of Materials to Green and Sustainable World".</p>
',
'download_count' => (int) 0,
'admin_delete' => (int) 0,
'status' => (int) 1,
'created' => null,
'modified' => null,
'[new]' => false,
'[accessible]' => [
'*' => true
],
'[dirty]' => [],
'[original]' => [],
'[virtual]' => [],
'[errors]' => [],
'[invalid]' => [],
'[repository]' => 'Issues'
}
App\Controller\ArticlesController::details() - APP/Controller/ArticlesController.php, line 300
Cake\Controller\Controller::invokeAction() - CORE/src/Controller/Controller.php, line 429
Cake\Routing\Dispatcher::_invoke() - CORE/src/Routing/Dispatcher.php, line 114
Cake\Routing\Dispatcher::dispatch() - CORE/src/Routing/Dispatcher.php, line 87
[main] - ROOT/webroot/index.php, line 51
Notice (8): Trying to get property of non-object [APP/Controller/ArticlesController.php, line 302]
$id = '777'
$issue = object(Cake\ORM\Table) {
'registryAlias' => 'Issues',
'table' => 'issues',
'alias' => 'Issues',
'entityClass' => '\Cake\ORM\Entity',
'associations' => [],
'behaviors' => [],
'defaultConnection' => 'default',
'connectionName' => 'default'
}
$article_current = object(Cake\ORM\Table) {
'registryAlias' => 'Articles',
'table' => 'articles',
'alias' => 'Articles',
'entityClass' => '\Cake\ORM\Entity',
'associations' => [],
'behaviors' => [],
'defaultConnection' => 'default',
'connectionName' => 'default'
}
$article = object(Cake\ORM\Entity) {
'id' => (int) 777,
'user_id' => (int) 0,
'volume' => (int) 72,
'volumeno' => (int) 7,
'issuseno' => (int) 1,
'issusemonth' => 'January',
'issuseyear' => '2016',
'title' => '<p>Recycled Plastic Material Properties Defined By Nanoindentation</p>
',
'meta_title' => 'Recycled plastic material properties defined by nanoindentation',
'meta_desc' => 'Recycled plastic material properties defined by nanoindentation',
'meta_keyword' => 'Recycled plastic, thermoplastics, viscoelastic material, nanoindentation, microstructure.',
'alias_name' => 'recycledplasticmaterialpropertiesdefinedbynanoindentation',
'authorname' => '<p>Zdenka Prochazkova<sup>*</sup>, Vlastimil Kralik, Jiri Nemecek, Michal Sejnoha</p>
',
'authorfrontname' => 'Zdenka Prochazkova, Vlastimil Kralik, Jiri Nemecek, Michal Sejnoha',
'authoraffiliation' => '<p><em>Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7, Prague 6, 16629, Czech Republic</em></p>
',
'authoremail' => '<p>E-mail: zdenka.prochakova@fsv.cvut.cz</p>
',
'authorbiography' => '',
'page' => '78-82',
'pagesequence' => '14',
'doi' => '10.5185/amlett.2016.6170',
'articletype' => '1',
'keyword' => '<p>Recycled plastic, thermoplastics, viscoelastic material, nanoindentation, microstructure.</p>
',
'abstractpdf' => null,
'abstractdec' => '<p>Introduction of recycled plastic materials in structural applications such as bridges, retaining walls or railway sleepers requires a proper identification of necessary material properties. Given similarities in the microstructure of various structural elements we limit our attention to beams having a rectangular cross-section. Owing to the manufacturing process the cross-section is represented by a porous-core (inner section) surrounded by a homogeneous material (outer section). The influence of microstructural details on material parameters is examined here with a reference to the elastic Young’s modulus derived from nanoindentation measurements. To identify a gradual evolution of the stiffness of plastic material from the outer section into the core the grid indentation method based on the statistical evaluation of a large number of indentations was adopted. These tests were accompanied by standard static indentation measurements to address also the effect of temperature in the range of 20–40°C. When dealing with these types of recycled plastics, even a 5°C temperature variation leads to a significant change in the material stiffness. In addition, standard macroscopic material properties were measured by tensile tests of samples with and without the porous core and compared with microscopic parameters. The elastic modulus obtained from nanoindentation was found to be ~20 % higher than that provided by the tensile tests. </p>
',
'fullabstractpdf' => '5679805e9c9cf1450803294_fullabstratct.pdf',
'fullabstractdesc' => '',
'supporting_information' => null,
'tocimage' => '',
'received' => '',
'accepted_for_publication' => '',
'checked_for_plagiarism' => 'Yes',
'review_by' => '',
'peer_reviewers_approved_by' => '',
'peer_reviewer_comments' => '',
'editor_who_approved_publication' => '',
'created' => object(Cake\I18n\FrozenTime) {},
'modified' => '2015-12-22 09:54:54',
'sequence' => (int) 13,
'status' => (int) 1,
'published' => (int) 1,
'mostcitedissue' => (int) 0,
'view_counts' => (int) 0,
'count_download' => (int) 0,
'admin_delete' => (int) 0,
'citation_author' => null,
'citation_author_institution' => null,
'last_page' => (int) 0,
'article_html_data' => null,
'refernece' => null,
'[new]' => false,
'[accessible]' => [
'*' => true
],
'[dirty]' => [],
'[original]' => [],
'[virtual]' => [],
'[errors]' => [],
'[invalid]' => [],
'[repository]' => 'Articles'
}
$issue_article = 'Volume 7, Issue 1, Article ID 78-82, January 2016'
$Issues_articles_image = null
$coverimage_artciles = '/aml/uploads/coverimage/'
$coverimage_desc = ''
$issue_data = object(Cake\ORM\Entity) {
'id' => (int) 527,
'type' => '21',
'volumenumber' => '12',
'issusenumber' => '3',
'issusemonth' => 'March',
'issuseyear' => '2021',
'pageno' => '21031607-21031615',
'sequence' => (int) 1,
'coverimage_file' => 'March_1609938278.jpg',
'coverimagepdf_file' => null,
'coverimage_desc' => '<p style="text-align: justify;">Development of sustainable energy materials is becoming more and more important to tackle the challenges of energy innovation and technology. It will also act like an appliance for social progress, economic growth, poverty reduction, equity, and environmental sustainability. The cover photo of the March 2021 issue of Advanced Materials Letters is inspired from the 07th point of United Nation’s Sustainable Development Goals, “Ensure access to affordable, reliable, sustainable and modern energy for all” and the agenda of the International Association of Advanced Materials for 2030 decade, "Advancement of Materials to Green and Sustainable World".</p>
',
'download_count' => (int) 0,
'admin_delete' => (int) 0,
'status' => (int) 1,
'created' => null,
'modified' => null,
'[new]' => false,
'[accessible]' => [
'*' => true
],
'[dirty]' => [],
'[original]' => [],
'[virtual]' => [],
'[errors]' => [],
'[invalid]' => [],
'[repository]' => 'Issues'
}
App\Controller\ArticlesController::details() - APP/Controller/ArticlesController.php, line 302
Cake\Controller\Controller::invokeAction() - CORE/src/Controller/Controller.php, line 429
Cake\Routing\Dispatcher::_invoke() - CORE/src/Routing/Dispatcher.php, line 114
Cake\Routing\Dispatcher::dispatch() - CORE/src/Routing/Dispatcher.php, line 87
[main] - ROOT/webroot/index.php, line 51
Recycled plastic material properties defined by nanoindentation
×
advanced search
Recycled Plastic Material Properties Defined By Nanoindentation
Zdenka Prochazkova*, Vlastimil Kralik, Jiri Nemecek, Michal Sejnoha
Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7, Prague 6, 16629, Czech Republic
Introduction of recycled plastic materials in structural applications such as bridges, retaining walls or railway sleepers requires a proper identification of necessary material properties. Given similarities in the microstructure of various structural elements we limit our attention to beams having a rectangular cross-section. Owing to the manufacturing process the cross-section is represented by a porous-core (inner section) surrounded by a homogeneous material (outer section). The influence of microstructural details on material parameters is examined here with a reference to the elastic Young’s modulus derived from nanoindentation measurements. To identify a gradual evolution of the stiffness of plastic material from the outer section into the core the grid indentation method based on the statistical evaluation of a large number of indentations was adopted. These tests were accompanied by standard static indentation measurements to address also the effect of temperature in the range of 20–40°C. When dealing with these types of recycled plastics, even a 5°C temperature variation leads to a significant change in the material stiffness. In addition, standard macroscopic material properties were measured by tensile tests of samples with and without the porous core and compared with microscopic parameters. The elastic modulus obtained from nanoindentation was found to be ~20 % higher than that provided by the tensile tests.
Welcome to the new website of Advance Materials Letters!
Important Information for Manuscript Submission
Submission of revised manuscripts - If you have submitted your article in our old submission system, all authors are requested to submit their revisions in the old submission system using your existing username and passwords.
New Submissions are welcome to submit manuscripts using ScholarOne submission system.