$id = '773'
$issue = object(Cake\ORM\Table) {
'registryAlias' => 'Issues',
'table' => 'issues',
'alias' => 'Issues',
'entityClass' => '\Cake\ORM\Entity',
'associations' => [],
'behaviors' => [],
'defaultConnection' => 'default',
'connectionName' => 'default'
}
$article_current = object(Cake\ORM\Table) {
'registryAlias' => 'Articles',
'table' => 'articles',
'alias' => 'Articles',
'entityClass' => '\Cake\ORM\Entity',
'associations' => [],
'behaviors' => [],
'defaultConnection' => 'default',
'connectionName' => 'default'
}
$article = object(Cake\ORM\Entity) {
'id' => (int) 773,
'user_id' => (int) 0,
'volume' => (int) 72,
'volumeno' => (int) 7,
'issuseno' => (int) 1,
'issusemonth' => 'January',
'issuseyear' => '2016',
'title' => '<p>Poly (ε-caprolactone) Synthesis By A Novel Enzymatic Catalyst: Candida Antarctica Lipase B (CALB) Immobilized On A Modified Silica-based Material By Physical Adsorption</p>
',
'meta_title' => 'Poly (?-caprolactone) Synthesis By A Novel Enzymatic Catalyst: Candida Antarctica Lipase B (CALB) Immobilized On A Modified Silica-based Material By Physical Adsorption',
'meta_desc' => 'Poly (?-caprolactone) Synthesis By A Novel Enzymatic Catalyst: Candida Antarctica Lipase B (CALB) Immobilized On A Modified Silica-based Material By Physical Adsorption',
'meta_keyword' => 'Enzymatic polymerization, poly (ε-caprolactone), lipase, enzyme immobilization.',
'alias_name' => 'poly(epsilon;-caprolactone)synthesisbyanovelenzymaticcatalystcandidaantarcticalipaseb (calb)immobilizedonamodifiedsilica-basedmaterialbyphysicaladsorption',
'authorname' => '<p>Cansu Ulker<sup>*</sup>, Nurefsan Gokalp, Yuksel Avcibasi Guvenilir </p>
',
'authorfrontname' => 'Cansu Ulker, Nurefsan Gokalp, Yuksel Avcibasi Guvenilir ',
'authoraffiliation' => '<p><em>Department of Chemical Engineering, Istanbul Technical University, 34469, Maslak-Istanbul, Turkey</em></p>
',
'authoremail' => '<p>E-mail: ulkerc@itu.edu.tr</p>
',
'authorbiography' => '',
'page' => '54-59',
'pagesequence' => '10',
'doi' => '10.5185/amlett.2016.6058',
'articletype' => '1',
'keyword' => '<p>Enzymatic polymerization, poly (ε-caprolactone), lipase, enzyme immobilization.</p>
',
'abstractpdf' => null,
'abstractdec' => '<p style="text-align:justify"><span style="font-family:times new roman,serif; font-size:10.0pt">In the present study, ring opening polymerization of ε-caprolactone was performed by a novel enzymatic catalyst, <em>Candida antarctica</em> lipase B (CALB) immobilized on a modified silica-based material by physical adsorption. Molecular weight distributions and chain structures were compared by using gel permeation chromatography (GPC) and hydrogen nuclear magnetic resonance (<sup>1</sup>H NMR) analysis, respectively. In addition, for the determination of thermal properties, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed. Scanning electron microscopy (SEM) was applied to observe the surface structure of the polymer. Effects of temperature, reaction time, and enzyme concentration on molecular weight of poly (ε-caprolactone) (PCL) were investigated and optimum conditions for the ring opening polymerization of ε-caprolactone via this new immobilized enzyme were obtained. Highest molecular weight was achieved as 14000 g/mol at the end of 48 hours at 60 ÌŠ C. Moreover, considerably high molecular weights were successfully reached at lower temperatures by this novel enzyme, which makes this process low energy consuming besides being environmentally friendly. It is suggested that, CALB immobilized on a modified silica-based material by physical adsorption may be a great alternative for widely used commercial enzyme, Novozyme 435. This work also makes possible a new route for polymer synthesis. </span></p>
',
'fullabstractpdf' => '56797d64e240c1450802532_fullabstratct.pdf',
'fullabstractdesc' => '',
'supporting_information' => null,
'tocimage' => '',
'received' => '',
'accepted_for_publication' => '',
'checked_for_plagiarism' => 'Yes',
'review_by' => '',
'peer_reviewers_approved_by' => '',
'peer_reviewer_comments' => '',
'editor_who_approved_publication' => '',
'created' => object(Cake\I18n\FrozenTime) {},
'modified' => '2015-12-22 09:42:12',
'sequence' => (int) 10,
'status' => (int) 1,
'published' => (int) 1,
'mostcitedissue' => (int) 0,
'view_counts' => (int) 0,
'count_download' => (int) 0,
'admin_delete' => (int) 0,
'citation_author' => null,
'citation_author_institution' => null,
'last_page' => (int) 0,
'article_html_data' => null,
'refernece' => null,
'[new]' => false,
'[accessible]' => [
'*' => true
],
'[dirty]' => [],
'[original]' => [],
'[virtual]' => [],
'[errors]' => [],
'[invalid]' => [],
'[repository]' => 'Articles'
}
$issue_article = 'Volume 7, Issue 1, Article ID 54-59, January 2016'
$Issues_articles_image = null
$coverimage_artciles = ''
$coverimage_desc = ''
$issue_data = object(Cake\ORM\Entity) {
'id' => (int) 530,
'type' => '21',
'volumenumber' => '12',
'issusenumber' => '6',
'issusemonth' => 'June',
'issuseyear' => '2021',
'pageno' => '21061633-21061641',
'sequence' => (int) 1,
'coverimage_file' => 'June_1616504156.jpg',
'coverimagepdf_file' => null,
'coverimage_desc' => '<p style="text-align:justify">The International Association of Advanced Materials (IAAM) is stepped into the next decade by leading the ‘<a href="https://www.iaamonline.org/advancement-of-materials-to-sustainable-and-green-world" target="_blank">Advancement of Materials to Sustainable and Green World’</a> to working in line with the United Nations’ Sustainable Development Goals (SDGs) for a green future. With its accumulative sustainable development agenda, the association puts world-wide efforts with Materials Science, Engineering, and Technology across spheres of academia and industry towards potentially addressing the challenges of sustainability of materials research and innovation for a green world. The cover photo of this June 2021 issue of Advanced Materials Letters is dedicated to <a href="https://www.iaamonline.org/sustainable-development-agenda-for-2030" target="_blank">IAAM’s Sustainable Development Agenda for 2030</a> and inspired by the <a href="https://www.vbripress.com/aml/articles/details/1628" target="_blank">editorial article</a> by Dr. Ashutosh Tiwari.</p>
',
'download_count' => (int) 0,
'admin_delete' => (int) 0,
'status' => (int) 1,
'created' => null,
'modified' => object(Cake\I18n\FrozenTime) {},
'[new]' => false,
'[accessible]' => [
'*' => true
],
'[dirty]' => [],
'[original]' => [],
'[virtual]' => [],
'[errors]' => [],
'[invalid]' => [],
'[repository]' => 'Issues'
}
App\Controller\ArticlesController::details() - APP/Controller/ArticlesController.php, line 300
Cake\Controller\Controller::invokeAction() - CORE/src/Controller/Controller.php, line 429
Cake\Routing\Dispatcher::_invoke() - CORE/src/Routing/Dispatcher.php, line 114
Cake\Routing\Dispatcher::dispatch() - CORE/src/Routing/Dispatcher.php, line 87
[main] - ROOT/webroot/index.php, line 51
Notice (8): Trying to get property of non-object [APP/Controller/ArticlesController.php, line 302]
$id = '773'
$issue = object(Cake\ORM\Table) {
'registryAlias' => 'Issues',
'table' => 'issues',
'alias' => 'Issues',
'entityClass' => '\Cake\ORM\Entity',
'associations' => [],
'behaviors' => [],
'defaultConnection' => 'default',
'connectionName' => 'default'
}
$article_current = object(Cake\ORM\Table) {
'registryAlias' => 'Articles',
'table' => 'articles',
'alias' => 'Articles',
'entityClass' => '\Cake\ORM\Entity',
'associations' => [],
'behaviors' => [],
'defaultConnection' => 'default',
'connectionName' => 'default'
}
$article = object(Cake\ORM\Entity) {
'id' => (int) 773,
'user_id' => (int) 0,
'volume' => (int) 72,
'volumeno' => (int) 7,
'issuseno' => (int) 1,
'issusemonth' => 'January',
'issuseyear' => '2016',
'title' => '<p>Poly (ε-caprolactone) Synthesis By A Novel Enzymatic Catalyst: Candida Antarctica Lipase B (CALB) Immobilized On A Modified Silica-based Material By Physical Adsorption</p>
',
'meta_title' => 'Poly (?-caprolactone) Synthesis By A Novel Enzymatic Catalyst: Candida Antarctica Lipase B (CALB) Immobilized On A Modified Silica-based Material By Physical Adsorption',
'meta_desc' => 'Poly (?-caprolactone) Synthesis By A Novel Enzymatic Catalyst: Candida Antarctica Lipase B (CALB) Immobilized On A Modified Silica-based Material By Physical Adsorption',
'meta_keyword' => 'Enzymatic polymerization, poly (ε-caprolactone), lipase, enzyme immobilization.',
'alias_name' => 'poly(epsilon;-caprolactone)synthesisbyanovelenzymaticcatalystcandidaantarcticalipaseb (calb)immobilizedonamodifiedsilica-basedmaterialbyphysicaladsorption',
'authorname' => '<p>Cansu Ulker<sup>*</sup>, Nurefsan Gokalp, Yuksel Avcibasi Guvenilir </p>
',
'authorfrontname' => 'Cansu Ulker, Nurefsan Gokalp, Yuksel Avcibasi Guvenilir ',
'authoraffiliation' => '<p><em>Department of Chemical Engineering, Istanbul Technical University, 34469, Maslak-Istanbul, Turkey</em></p>
',
'authoremail' => '<p>E-mail: ulkerc@itu.edu.tr</p>
',
'authorbiography' => '',
'page' => '54-59',
'pagesequence' => '10',
'doi' => '10.5185/amlett.2016.6058',
'articletype' => '1',
'keyword' => '<p>Enzymatic polymerization, poly (ε-caprolactone), lipase, enzyme immobilization.</p>
',
'abstractpdf' => null,
'abstractdec' => '<p style="text-align:justify"><span style="font-family:times new roman,serif; font-size:10.0pt">In the present study, ring opening polymerization of ε-caprolactone was performed by a novel enzymatic catalyst, <em>Candida antarctica</em> lipase B (CALB) immobilized on a modified silica-based material by physical adsorption. Molecular weight distributions and chain structures were compared by using gel permeation chromatography (GPC) and hydrogen nuclear magnetic resonance (<sup>1</sup>H NMR) analysis, respectively. In addition, for the determination of thermal properties, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed. Scanning electron microscopy (SEM) was applied to observe the surface structure of the polymer. Effects of temperature, reaction time, and enzyme concentration on molecular weight of poly (ε-caprolactone) (PCL) were investigated and optimum conditions for the ring opening polymerization of ε-caprolactone via this new immobilized enzyme were obtained. Highest molecular weight was achieved as 14000 g/mol at the end of 48 hours at 60 ÌŠ C. Moreover, considerably high molecular weights were successfully reached at lower temperatures by this novel enzyme, which makes this process low energy consuming besides being environmentally friendly. It is suggested that, CALB immobilized on a modified silica-based material by physical adsorption may be a great alternative for widely used commercial enzyme, Novozyme 435. This work also makes possible a new route for polymer synthesis. </span></p>
',
'fullabstractpdf' => '56797d64e240c1450802532_fullabstratct.pdf',
'fullabstractdesc' => '',
'supporting_information' => null,
'tocimage' => '',
'received' => '',
'accepted_for_publication' => '',
'checked_for_plagiarism' => 'Yes',
'review_by' => '',
'peer_reviewers_approved_by' => '',
'peer_reviewer_comments' => '',
'editor_who_approved_publication' => '',
'created' => object(Cake\I18n\FrozenTime) {},
'modified' => '2015-12-22 09:42:12',
'sequence' => (int) 10,
'status' => (int) 1,
'published' => (int) 1,
'mostcitedissue' => (int) 0,
'view_counts' => (int) 0,
'count_download' => (int) 0,
'admin_delete' => (int) 0,
'citation_author' => null,
'citation_author_institution' => null,
'last_page' => (int) 0,
'article_html_data' => null,
'refernece' => null,
'[new]' => false,
'[accessible]' => [
'*' => true
],
'[dirty]' => [],
'[original]' => [],
'[virtual]' => [],
'[errors]' => [],
'[invalid]' => [],
'[repository]' => 'Articles'
}
$issue_article = 'Volume 7, Issue 1, Article ID 54-59, January 2016'
$Issues_articles_image = null
$coverimage_artciles = '/aml/uploads/coverimage/'
$coverimage_desc = ''
$issue_data = object(Cake\ORM\Entity) {
'id' => (int) 530,
'type' => '21',
'volumenumber' => '12',
'issusenumber' => '6',
'issusemonth' => 'June',
'issuseyear' => '2021',
'pageno' => '21061633-21061641',
'sequence' => (int) 1,
'coverimage_file' => 'June_1616504156.jpg',
'coverimagepdf_file' => null,
'coverimage_desc' => '<p style="text-align:justify">The International Association of Advanced Materials (IAAM) is stepped into the next decade by leading the ‘<a href="https://www.iaamonline.org/advancement-of-materials-to-sustainable-and-green-world" target="_blank">Advancement of Materials to Sustainable and Green World’</a> to working in line with the United Nations’ Sustainable Development Goals (SDGs) for a green future. With its accumulative sustainable development agenda, the association puts world-wide efforts with Materials Science, Engineering, and Technology across spheres of academia and industry towards potentially addressing the challenges of sustainability of materials research and innovation for a green world. The cover photo of this June 2021 issue of Advanced Materials Letters is dedicated to <a href="https://www.iaamonline.org/sustainable-development-agenda-for-2030" target="_blank">IAAM’s Sustainable Development Agenda for 2030</a> and inspired by the <a href="https://www.vbripress.com/aml/articles/details/1628" target="_blank">editorial article</a> by Dr. Ashutosh Tiwari.</p>
',
'download_count' => (int) 0,
'admin_delete' => (int) 0,
'status' => (int) 1,
'created' => null,
'modified' => object(Cake\I18n\FrozenTime) {},
'[new]' => false,
'[accessible]' => [
'*' => true
],
'[dirty]' => [],
'[original]' => [],
'[virtual]' => [],
'[errors]' => [],
'[invalid]' => [],
'[repository]' => 'Issues'
}
App\Controller\ArticlesController::details() - APP/Controller/ArticlesController.php, line 302
Cake\Controller\Controller::invokeAction() - CORE/src/Controller/Controller.php, line 429
Cake\Routing\Dispatcher::_invoke() - CORE/src/Routing/Dispatcher.php, line 114
Cake\Routing\Dispatcher::dispatch() - CORE/src/Routing/Dispatcher.php, line 87
[main] - ROOT/webroot/index.php, line 51
Poly (?-caprolactone) Synthesis By A Novel Enzymatic Catalyst: Candida Antarctica Lipase B (CALB) Immobilized On A Modified Silica-based Material By Physical Adsorption
×
advanced search
Poly (ε-caprolactone) Synthesis By A Novel Enzymatic Catalyst: Candida Antarctica Lipase B (CALB) Immobilized On A Modified Silica-based Material By Physical Adsorption
In the present study, ring opening polymerization of ε-caprolactone was performed by a novel enzymatic catalyst, Candida antarctica lipase B (CALB) immobilized on a modified silica-based material by physical adsorption. Molecular weight distributions and chain structures were compared by using gel permeation chromatography (GPC) and hydrogen nuclear magnetic resonance (1H NMR) analysis, respectively. In addition, for the determination of thermal properties, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed. Scanning electron microscopy (SEM) was applied to observe the surface structure of the polymer. Effects of temperature, reaction time, and enzyme concentration on molecular weight of poly (ε-caprolactone) (PCL) were investigated and optimum conditions for the ring opening polymerization of ε-caprolactone via this new immobilized enzyme were obtained. Highest molecular weight was achieved as 14000 g/mol at the end of 48 hours at 60 ÌŠ C. Moreover, considerably high molecular weights were successfully reached at lower temperatures by this novel enzyme, which makes this process low energy consuming besides being environmentally friendly. It is suggested that, CALB immobilized on a modified silica-based material by physical adsorption may be a great alternative for widely used commercial enzyme, Novozyme 435. This work also makes possible a new route for polymer synthesis.
Welcome to the new website of Advance Materials Letters!
Important Information for Manuscript Submission
Submission of revised manuscripts - If you have submitted your article in our old submission system, all authors are requested to submit their revisions in the old submission system using your existing username and passwords.
New Submissions are welcome to submit manuscripts using ScholarOne submission system.