1Research Institute of Medical Materials, Tomsk State University, ul. 19 Gv. divizii, 17, Tomsk 634045, Russia
2Department of Clinical Surgery, Siberian State Medical University, ul Moskovskiy tr, 1, Tomsk 634050, Russia
3Kang & Park Medical Co., O-song Saengmyung1-ro, Chungcheongbukdo, O-Song 363-951, South Korea
Adv. Mater. Lett., 2015, 6 (9), pp 774-778
DOI: 10.5185/amlett.2015.5882
Publication Date (Web): Sep 06, 2015
Copyright © IAAM-VBRI Press
E-mail: tc77@mail2000.ru
Cell responses to electromagnetic radiation are due to many factors including the cellular microenvironment. The aim of the present study was to explore the effects of ultraviolet (UV) and infrared (IR) irradiation of low intensity on cultured cells derived from different biological tissues (spleen, bone marrow, and Ehrlich's adenocarcinoma), which were immobilized in a porous TiNi-based alloy scaffold. Accordingly, the following objectives were set: i) to evaluate the impact of low-intensity radiation on cell suspensions, and ii) to carry out a comparative analysis of the viability of cells immobilized in porous TiNi-based alloy and IR- and UV-irradiated. The data show that the extracellular environment of bone marrow, tumor and spleen cell populations affects their viability and proliferative potency in porous TiNi-based scaffolds. IR- and UV irradiation of cell cultures immobilized in the scaffold affects the cell viability in populations of bone marrow, tumor, and spleen cells. In case of IR irradiation, cell viability was significantly improved, at the same time UV irradiation suppressed cell proliferation activity. The effect of IR irradiation can be used to resuscitate the cell area. The effect of UV irradiation can be used to destroy residual tumor lesions or other pathological cell populations. Effects of low-intensity infrared (IR) and ultraviolet (UV) radiation on the number of viable cells were evaluated against the control group in which cells were exposed to natural daylight. The results showed that IR irradiation led to a 4.6-, 2.5-, and 1.3-fold increase in viable Ehrlich tumor, bone marrow, and spleen cells, respectively, while UV exposure led to a 3.9-, 1.5-, and 1.2-fold increase, respectively.
Cell cultures, cell tissue engineering, porous TiNi scaffold, IR and UV radiation.
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India
Progress and Perspectives of Photodetectors Based on 2D Materials
Synthesis and Characterization of Platinum and Platinum based Alloy Nanoparticles Anchored on Various Carbon Materials for Methanol Oxidation in a DMFC – A Short Review
Influence of Processing Induced Morphology on the Performance of PP Injected Intricate Pieces Modified with MWCNT as a Painting Aide
Inhibitive Effect on the Rate of Hydrolysis of Tetracaine by the Surfactant-Coated Magnetic Nanoparticles (Fe3O4)
Multi-Energy System Based on Ocean Thermal Energy Conversion
Synthesis of Nitrogen-doped KTaTeO6 with Enhanced Visible Light Photocatalytic Degradation of Methylene Blue
Structural Evolution and Enhanced Energy Density, Ferroelectric Property Investigation in Gd Substituted NBT – BT Lead Free Ferroelectric Ceramics
Designing of 10 Wt. % Graphite Particulate Hot Forged AA7075 Composites and its Loss Factor Analysis
Positron Annihilation Spectroscopy of Basaltic Rocks from Plio-Qaternary Volcanics, Sana’a-Amran Volcanic Field, Yemen