1Department of Physics, University College of Science, Osmania University, Saifabad, Hyderabad 500 004, India
2Department of PhysicsGovt.City College, Nayapul, Hyderabad500002, India
3Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
4School of Physics, Eternal University, Baru Sahib 173101, Himachal Pradesh, India
Adv. Mater. Lett., 2015, 6 (8), pp 717-725
DOI: 10.5185/amlett.2015.5874
Publication Date (Web): Aug 02, 2015
Copyright © IAAM-VBRI Press
E-mail: praveenaou@gmail.com
Al3Fe5O12 (AIG) nanopowders were synthesized at different pH using aqueous co-precipitation method. The effect of pH on the phase formation of AIG is characterized using XRD, TEM, FTIR and TG/DTA. From the Scherer formula, the particle sizes of the powders were found to be 15, 21, 25 and 30 nm for pH= 9, 10, 11 and 12, respectively. It is found that as the pH of the solution increase the particle size also increases. It is clear from the TG/DTA curves that as the pH is increasing the weight losses were found to be small. The nanopowders were sintered at 900°C/4hrs using conventional sintering method. The phase formation is completed at 800°C/4h which is correlated with TG/DTA. The average grain size of the samples is found to be ~55 nm. As the pH increases the magnetization values are also increasing. The saturation magnetization was found to be 4 emu/g, 6 emu/g, 7 emu/g and 9 emu/g corresponding to pH= 9, 10, 11 and 12, respectively which clearly shows that the magnetization values are dependent on pH. Room temperature magnetization measurements established these compounds to be soft magnetic. The dielectric and magnetic properties (εʹ, εʺ, µÊ¹ and µÊº) of AIG was studied over a wide range of frequency (1GHz-50GHz). With increase of pH both εʹ and µÊ¹ increased. This finding provides a new route for AIG materials that can be used in the gigahertz range.
TG/DTA, magnetic materials, garnets, co-precipitation, dielectric properties, magnetic properties.
Progress and Perspectives of Photodetectors Based on 2D Materials
Synthesis and Characterization of Platinum and Platinum based Alloy Nanoparticles Anchored on Various Carbon Materials for Methanol Oxidation in a DMFC – A Short Review
Influence of Processing Induced Morphology on the Performance of PP Injected Intricate Pieces Modified with MWCNT as a Painting Aide
Inhibitive Effect on the Rate of Hydrolysis of Tetracaine by the Surfactant-Coated Magnetic Nanoparticles (Fe3O4)
Multi-Energy System Based on Ocean Thermal Energy Conversion
Synthesis of Nitrogen-doped KTaTeO6 with Enhanced Visible Light Photocatalytic Degradation of Methylene Blue
Structural Evolution and Enhanced Energy Density, Ferroelectric Property Investigation in Gd Substituted NBT – BT Lead Free Ferroelectric Ceramics
Designing of 10 Wt. % Graphite Particulate Hot Forged AA7075 Composites and its Loss Factor Analysis
Positron Annihilation Spectroscopy of Basaltic Rocks from Plio-Qaternary Volcanics, Sana’a-Amran Volcanic Field, Yemen
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation