Influence of particle velocities and impact angles on the erosion mechanisms of AISI 1018 steel
1Center for Advanced Materials, Qatar University, 2713 Doha, Qatar
2Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, 43721 Suez, Egypt
Adv. Mater. Lett., 2015, 6 (7), pp 653-659
DOI: 10.5185/amlett.2015.5645
Publication Date (Web): Jul 12, 2015
Copyright © IAAM-VBRI Press
E-mail: adel.mohamed@qu.edu.qa, madel@uqac.ca
Failure of oil and gas pipeline due to solid particles entrainment has been a great concern to the petroleum industry. Erosion is the gradual material removal of pipeline materials due to solid particle impingement and results in unacceptable damage to the pipeline steel material surface. Because this process is difficult to investigate during operation, laboratory simulation test provides some insight. In this study, series of erosion tests were carried out to investigate the influence of particle velocity and impact angle on the erosion mechanism of AISI 1018 steel. Sand blaster erosion machine was used as the test equipment while the particle velocity and impact angle were ranged from 20 to 80 m/s and between 30 and 90° respectively. The results showed that at 90° impact angle, ploughing mechanism was operative, while material removal through low angle cutting was the dominant mechanism at lower impact angle during the erosion of AISI 1018 steel. Mainly, embedment of aluminium oxide particles on the target steel surface, micro–cutting, low angle cutting, pitting and ploughing were observed for low impact angle tests. It was suggested that scratches, cuttings and ploughing observed on some failed oil and gas pipeline steels could be attributed to erosion mechanism.
AISI 1018 steel, oxide particles, impact angle, particles velocity, erosion mechanisms.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India