Low Temperature Laboratory, UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore452001, M.P. India
Adv. Mater. Lett., 2015, 6 (6), pp 544-547
DOI: 10.5185/amlett.2015.5768
Publication Date (Web): May 28, 2015
Copyright © IAAM-VBRI Press
E-mail: vganesan@csr.res.in
CeNi2Al3 system is a potential candidate for low temperature thermoelectrics. Substitution studies, especially at the Ni site are considered to be of importance due to the drastic tuning of its physical properties. Resistivity in magnetic fields and thermoelectric power measurements of Cu doped CeNi2Al3 (x=0.0 to 0.4) system is reported in this investigation. This dense Kondo lattice system is investigated with an aim of understanding its basic transport mechanism. Negative magnetoresistance is seen for x=0.3 and 0.4 in the magnetic field up to 14 T. Deviation from the Kondo behavior occurs at temperatures close to 2 K with a down turn in resistivity. The nature of resistivity at low temperatures is investigated in view of the possible evidence for Fermi liquid behavior and also the formation of heavy Fermion in corroboration with specific heat studies. Doping dependence of linear diffusion coefficient and Sommerfeld coefficient of specific heat are analyzed and discussed in connection with the heavy Fermion formation. The results obtained show a promising trend in tuning these materials by way of Kondo route as well as by the substitution especially at the Ni site in the present system.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study