pH responsive curcumin/ ZnO nanocomposite for drug delivery
1Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
2Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
3Department of Chemistry, Sourashtra College, Madurai 625004, India
Adv. Mater. Lett., 2015, 6 (6), pp 505-512
DOI: 10.5185/amlett.2015.5766
Publication Date (Web): May 28, 2015
Copyright © IAAM-VBRI Press
E-mail: jjannaraju@gmail.com
Curcumin is recognized as an important natural biomaterial which has a wide range of biological importance, unfortunately it lacks in bioavailability predominantly due to its poor aqueous solubility. The intention of the present investigation was to develop a novel nanocomposite of curcumin with ZnO nanoparticle in order to improve its aqueous-phase solubility and develop its efficiency on microbes and cancer cells. Therefore, we have constructed an aqueous solvable curcumin/ZnO nanocomposite from the insoluble commercial curcumin and poorly soluble ZnO nanoparticles, consequently enhancing its biological importance. The synthesized ZnO nanoparticles, nanocurcumin, and the nanocomposite were analyzed with transmission electron microscope (TEM), and X-ray diffraction (XRD) along with spectral techniques. The calculated average particle size of ZnO nanoparticle and nanocomposite from XRD was found to be 21.44 nm and 24.66 nm respectively. The TEM image reveals that this new nanocomposite was found to have narrow particle size of 53 nm. The observed results declared that the title nanomaterials showed excellent antibacterial activity against, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Staphylococcus aureus. Their cytotoxicity performance against gastric cancer (AGS) cells was also carried out and observed that they showed concentration dependency. All the observed results declared that it has great potential for antibacterial and anticancer applications. The observed results of this investigation demonstrate that the present nano-conjugate can effectively deliver the antibacterial, anticancer drug curcumin towards the targeted biomolecules and hence appears to be a promising nano-formulation for chemotherapy and other biomedical applications after a series of in-vivo tests on animal models.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India