Native defects and optical properties of Ar ion irradiated ZnO
1Department of Physics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, India
2Department of Physics, Bangabasi Morning College, 19, R. C. Sarani, Kolkata 700 009, India
3Variable Energy Cyclotron Centre (VECC), 1/AF, Bidhannagar, Kolkata 700 064, India
4Department of Physics and Materials Science, Indian Institute of Technology, Kharagpur 721302, India
5Inter-University Accelerator Centre, P.O. Box 10502, Aruna Asaf Ali Marg, New Delhi 110067, India
Adv. Mater. Lett., 2015, 6 (4), pp 365-369
DOI: 10.5185/amlett.2015.5730
Publication Date (Web): Mar 21, 2015
Copyright © IAAM-VBRI Press
E-mail: djphy@caluniv.ac.in
1.2 MeV Argon (Ar) ion irradiation turns white coloured ZnO to yellowish (fluence 1 × 1014 ions/cm2) and then reddish brown (1 × 1014 ions/cm2). At the same time the material becomes much more conducting and purely blue luminescent for the highest fluence of irradiation. To get insight on the defects in the irradiated samples Ultraviolet-visible (UV-vis) absorption, Raman, and photoluminescence (PL) spectroscopy and Glancing Angle X-Ray Diffraction (GAXRD) measurements have been carried out. Enhancement of overall disorder in the irradiated samples is reflected from the GAXRD peak broadening. UV-vis absorption spectra of the samples shows new absorption bands due to irradiation. Complete absorption in the blue region of the spectrum and partial absorption in the green and red region changes the sample colour from white to reddish brown. The Raman peak representing wurtzite structure of the ZnO material (~ 437 cm-1) has decreased monotonically with the increase of irradiation fluence. At the same time, evolution of the 575 cm-1 Raman mode in the irradiated samples shows the increase of oxygen deficient disorder like zinc interstitials (IZn) and/or oxygen vacancies (VO) in ZnO. PL spectrum of the yellow coloured sample shows large reduction of overall luminescence compared to the unirradiated one. Further increase of fluence causes an increase of luminescence in the blue region of the spectrum. The blue-violet emission can be associated with the interstitial Zn (IZn) related optical transition. The results altogether indicates IZn type defects in the highest fluence irradiated sample. Large changes in the electrical resistance and luminescent features of ZnO using Ar ion beam provides a purposeful way to tune the optoelectronic properties of ZnO based devices.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India