Cost Effective And Minimal Time Synthesis  of Mullite From A Mine Waste By Thermal Plasma Process

Swatirupa Pani, Rakesh Kumar Sahoo, Nilima Dash, Saroj Kumar Singh, Birendra Kumar Mohapatra

Institute of Minerals and Materials Technology, Bhubaneswar 751013, India

Adv. Mater. Lett., 2015, 6 (4), pp 318-323

DOI: 10.5185/amlett.2015.5644

Publication Date (Web): Mar 21, 2015



The synthesis of mullite from an aluminous-rich mine waste (shale) closely associated with iron/manganese mines from Bonai-Keonjhar belt, Odisha is reported. The shale constitutes major kaolinite with minor halloysite, quartz, orthoclase and plagioclase minerals and compositionally contains 36.40 % Al2O3 and 52.10% SiO2. In order to convert this mine waste to a refractory product, ‘Mullite’, alumina powder was added in 1:0.9; 1:1 and 1:1.1 weight ratios with the shale and thoroughly homogenized. Individual mixtures were fed in to the thermal plasma reactor and processed for only 5 minutes to form mullite. The phase and microstructure developed in the processed samples were investigated from their XRD patterns, Raman spectra and SEM images. Diagnostic peaks of the mullite phase are distinctly marked in the XRD pattern and Raman spectra of plasma treated products. Microstructure of mullite observed under SEM clearly exhibits a fused layered structure. The integrated results confirm the formation of high quality mullite from a mixture of 1:1 weight ratio. This low cost process can be implemented in industrial scale for processing of such mine waste to a value added refractory product.


Shaly rock, mullite, glass ceramics, alumina.

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment

Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  

The Cause of 100-year Low Carbonated Concrete of the Bridge 

Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections

Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends

Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method

Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane

Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 

Vilsmeier-Haack Transformations under Non Classical Conditions

New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen

An Assessment of Tribological Characteristics under different Operating Condition

Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation

Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites

Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM