1Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, India
2Department of PG Studies in Physics, JSS College, Ooty Road, Mysore-570025, India
3Inter University Accelerator Centre (IUAC), New Delhi 110 067, India
4School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta-30303, USA
Adv. Mater. Lett., 2015, 6 (2), pp 120-126
DOI: 10.5185/amlett.2015.5708
Publication Date (Web): Feb 08, 2015
Copyright © IAAM-VBRI Press
E-mail: gnanaprakash@physics.uni-mysore.ac.in
The total dose effects of 80 MeV carbon ions and 60Co gamma radiation in the dose range from 1 Mrad to 100 Mrad on advanced 200 GHz Silicon-Germanium heterojunction bipolar transistors (SiGe HBTs) are investigated. The stopping and range of ions in matter (SRIM) simulation study was conducted to understand the energy loss of 80 MeV carbon ions in SiGe HBT structure. Pre- and post-radiation DC figure of merits such as Gummel characteristics, excess base current, ideality factor, DC current gain, damage constant, neutral base recombination, avalanche multiplication of carriers and output characteristics were used to quantify the radiation tolerance of the devices. The excess base current, current gain and damage constant for 80 MeV carbon irradiated SiGe HBTs show more degradation when compared to 60Co gamma irradiation. The ideality factor for 80 MeV carbon ions irradiated SiGe HBTs is also more when compared to 60Co gamma irradiated SiGe HBTs. The SiGe HBTs shows minimal degradation in current gain at collector current levels (~ 1 mA) where the circuits are biased even after 100 Mrad of total dose. Therefore SiGe HBTs are became the reliable candidate for deep space exploration programs and high energy physics experiments (HEP) like large hadron colliders (LHCs).
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study