Cover Page January-2015-Advanced Materials Letters

Advanced Materials Letters

Volume 6, Issue 1, Pages 59-67, January 2015
About Cover


Synthesis And Characterization Of Graphite Doped Chitosan Composite For Batch Adsorption Of Lead (II) Ions From Aqueous Solution

Asha H. Gedam1*, Rajendra S. Dongre1*, Amit K. Bansiwal2

1Post Graduate Teaching Department of Chemistry, Rashtrasant Tukdoji Maharaj Nagpur University, Campus, Nagpur 440 033, India

2National Environmental Engineering Research Institute, Council of Scientific and Industrial Research, Nehru Marg, Nagpur 440 020, India

 

Adv. Mater. Lett., 2015, 6 (1), pp 59-67

DOI: 10.5185/amlett.2015.7592

Publication Date (Web): Dec 28, 2014

E-mail: rsdongre@hotmail.com

Abstract

The adsorption of poisonous lead (II) from aqueous solution using graphite doped chitosan composite as an adsorbent has been carried out. The characterizations of graphite doped chitosan composite were studied by using instrumental techniques like X-ray diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. The XRD study showed the crystalline nature of synthesized graphite doped chitosan composite with sharp and symmetric peaks. SEM morphology showed wide range of porosity that could achieve high lead (II) sorption. FTIR investigation evidenced that the presence of C=O and –OH functionalities participated in lead (II) adsorption from aqueous solution. The influence of pH, contact time, dose of adsorbent and initial metal ion concentration on removal of lead (II) was investigated. The adsorption efficiency was found to be pH dependent and the maximum 98% lead (II) removal observed at optimum pH 6.  Results showed that the maximum adsorbent capacity was at dosage of 1g/L and equilibrium time achieved at 120 min. Equilibrium adsorption experiments were studied at room temperature and data obtained fitted to Langmuir and Freundlich adsorption isotherm. Langmuir model had higher R2 values of 0.943 with sorption capacity of 6.711 mg of adsorbate/g of adsorbent which fitted the equilibrium adsorption process more than the Freundlich model. The adsorption kinetics was analyzed using pseudo first order, pseudo-second order and intraparticle diffusion models. Experimental data better fitted with pseudo second order kinetics model. The results illustrated that graphite doped chitosan composite has the potential to remove lead (II) ions from aqueous solution.

Keywords

Graphite doped chitosan composite, lead (II), adsorption, isotherm, kinetics.

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM