Cover Page August-2014-Advanced Materials Letters

Advanced Materials Letters

Volume 5, Issue 8, Pages 422-428, August 2014
About Cover


 Nanofibrous Filtering Materials With Catalytic Activity

Ganna Ungur1*, Jakub Hrůza2

1Department of Nonwovens and Nanofibrous Materials, Technical University of Liberec, 17 Listopadu, 584, Liberec, Czech Republic

2Center for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec, Czech Republic

Adv. Mater. Lett., 2014, 5 (8), pp 422-428

DOI: 10.5185/amlett.2014.amwc1025

Publication Date (Web): Jul 16, 2014

E-mail: Ganna.Ungur@tul.cz

Graphical Abstract

 Nanofibers, catalyst, air filtration, electrospinning

Abstract

This research describes the fabrication of nanofibrous materials for the air purification with high filtration efficiency and catalytic properties to clean the air from solid particles and emissions of automobile's transport. The polyurethane (PU) nanofibers were modified by particles of SnO2 and CrO2 in the ratio 95/5 to impart catalytic properties in the reaction with emission gases (CO, NOx).The modification process was provided by the introduction of metal’s oxide’s particles of different concentrations (1;2; 3; 4%) into the polymer solution. Reological properties and conductivity of the modified solutions were studied. The viscosity of solutions grew up gradually with increasing of SnO2/CrO2 concentrations. Fiber's samples were produced from modified solutions by the electorstatic fiber forming using Nanospider technology. The morphology of produced fibers was analysed by the Scanning Electron Microscopy (SEM). SEM pictures confirmed the smoothness of fibrous layer. The diameters of fibres were measured with the help of Lucie 32G computer software. The obtained results demonstrated increasing of average diameters of nanofibers for the concentration 1and 2% of catalysts in comparison with the pure PU samples. But fibers with 3 and 4% of SnO2/CrO2 particles showed the decreasing of average fiber diameters. The presence of catalyst on the nanofiber`s surface was proved by the method of Energy Dispersive Spectroscopy (EDS). The catalytic properties of produced nanolayers in the reaction with emission's gases were studied with the measurement setup consisting from the engine, a system of analyzers and UV lamp as a sourse of energy to activate the catalyst. All samples demonstrated good catalytic efficiency. The best result showed the sample of PU nanofibers with 3% of SnO2/CrO: the concentrations of CO and NOx reduced by 81% and 73% respectively. Produced samples are the promising materials for air-conditioning systems.

Keywords

Nanofibers, catalyst, air filtration, electrospinning

Current Issue

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare


Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization


Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system


Innovative Graphene-PDMS sensors for aerospace applications 


Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers


Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates


Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature


Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells


Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity


Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process


Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries


Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration


Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption


Previous issues

Smart Healthcare pulls up Clouds for Virtual Medicine

Selecting the correct electromagnetic inspection technology 

Influence of railway-track grinding on the track material condition and tribological behaviour

Micromechanical Fatigue Modelling of the Size Effect in Micro-Scale 316L Stainless Steel Specimens

Functionalization of Graphene and Reduced Graphene Oxide in Different Matrices

Effect of parasitic polytypes on ballistic electron transport in chemical vapor deposition grown 6H-SiC epitaxial layers

Photomemristive heterostructures based on two-dimensional crystals

Architecture - behaviour - properties relationship in Star-shaped MPA-PMMA and MPA-PS hyper-branched copolymers

Graphene and doped graphene: A comparative DFT study

Ag2CO3 / Magnetic reduced graphene oxide nanocomposite as advanced visible light photocatalytic hybrid materials for efficient degradation of azo dye

Optimization of acid hydrolysis process for the preparation cellulose nanofibrils

Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin

Study of microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

Upcoming Congress

Knowledge Experience at Sea TM