1Department of Physics, Polymer Nanotech Laboratory, R.T.M. Nagpur University, Nagpur, India
2N. S. Science and Arts College Bhadrawati, Dist. Chandrapur, India
3Department of Physics, Pune University, Pune, India
4Department of Physics, Shri Mohata College of Science, Nagpur, India
Adv. Mater. Lett., 2014, 5 (6), pp 360-365
DOI: 10.5185/amlett.2014.amwc.1036
Publication Date (Web): Mar 23, 2014
Copyright © IAAM-VBRI Press
E-mail: sbkondawar@yahoo.co.in
With more than 100 million tonnes of fly ash produced in India, use of fly ash for the preparation of polyaniline – fly ash composites will in no way help in its bulk utilization. Still the authors have made an effort towards the better utility of fly ash by synthesizing polyaniline –fly ash composites for electronic devices where the requirement of dielectric materials with good electrical conductivity. There is great challenge to use the waste of thermal power stations in the form of fly ash as reinforcement for the conducting polymers to be good dielectric materials. In this paper, we report the use of fly ash to prepare conducting polymer composite materials. In-situ polymerization of aniline was carried out in the presence of fly ash (FA) to synthesize conducting polyaniline–fly ash composites (PANI-FA) by chemical oxidation method. The PANI-FA composites have been synthesized with various compositions (10, 20, 30, 40 and 50 wt %) of fly ash in conducting polymer matrix. The surface morphology of these composites was studied by scanning electron microscopy (SEM). These composites were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD), Fourier Transform Infra-Red (FTIR) Spectroscopy to investigate surface morphology and structure of the composites. Thermal and frequency dependence dielectric properties of all the synthesized composites have been studied with the help of impedance analyzer. By incorporating fly ash into conducting polymers, dielectric constant of the composites was found to be improved as compared to that of pure conducting polymers. It was also noticed that the dielectric constant of all the composites found to be decreased with increasing frequency but increased with increasing temperature. The results obtained for these composites are of greater scientific and technological interest for good quality capacitors.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study