Electrical and microstructural properties of (Cu, Al, In)-doped SnO2 films deposited by spray pyroly
Department of Engineering Physics, Ankara University, Ankara 06100, Turkey
Adv. Mater. Lett., 2014, 5 (6), pp 309-314
DOI: 10.5185/amlett.2014.amwc.1016
Publication Date (Web): Mar 23, 2014
Copyright © IAAM-VBRI Press
E-mail: sgurakar@eng.ankara.edu.tr
The effect of Cu, Al and In doping on the microstructural and the electrical properties of the SnO2 films were studied. The undoped, Cu, Al and In (2 at. %) doped SnO2 films were deposited on the glass substrate by spray pyrolysis from 0.8 M SnCl2–ethanol solution at substrate temperature 400 °C. The microstructural properties of films were investigated by X-ray diffraction (XRD) method. It was determined that the films formed at polycrystalline structure in tetragonal phase and structure was not changed by dopant species. The lattice parameters (a), (c) and crystallite size (D) were determined and obtained in the range of 4.90-4.92 Å, 3.26-3.31 Å and 34-167 Å, respectively. The optical transmittance of thin films was measured and the optical band gap Eg values of the films were obtained in the range of 3.96-4.00 eV, using the Tauc relation. The electrical transport properties of undoped, Cu, Al and In-doped SnO2 films were investigated by means of conductivity measurements in a temperature range of 120-400 K. The electrical transport mechanism of the undoped, Cu, Al and In-doped SnO2 films was determined by means of the tunneling model through the back-to-back Schottky barrier and the thermionic field emission model in the temperature range of 120-300 K and 300-400 K, respectively.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India