Cover Page May-2014-Advanced Materials Letters

Advanced Materials Letters

Volume 5, Issue 5, Pages 265-271, May 2014
About Cover


Improving The Mechanical And Thermal Properties Of Semi-coke Based Carbon/copper Composites Reinforced Using Carbon Nanotubes

S. Kumari1*, A. Kumar1, P. R. Sengupta1, P. K. Dutta2, R. B. Mathur1

1CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India

2Motilal Nehru National Institute of Technology, Allahabad, India

Adv. Mater. Lett., 2014, 5 (5), pp 265-271

DOI: 10.5185/amlett.2013.10546

Publication Date (Web): Mar 09, 2014

E-mail: kumaris@mail.nplindia.ernet.in

Abstract

Multiwalled carbon nanotubes (MWCNT)- reinforced carbon/copper (C/Cu) composites were developed by powder metallurgy technique and mixed powders of C and Cu were consolidated into plates without using any extra binder followed by sintering at 1000oC in inert atmosphere. Samples were characterized for structural, mechanical, electrical and thermal properties w.r.t. different mass fraction of MWCNT in C-Cu matrix. In comparison to C/Cu composite, addition of minute amount (0.25 wt%) of CNT in C-Cu substantially improved the mechanical, electrical and thermal properties of composites. These composites were mechanically stable and strong and exhibited high bending strength of 162 MPa, indicating a homogeneous dispersion of MWCNTs in the C-Cu matrix. Maximum thermal conductivity of 37.60 W/mK perpendicular to the pressing direction was obtained for 0.50 wt% CNT reinforced C-Cu composite exhibiting an improvement of 45% over pure C-Cu composite processed under identical conditions. High thermal conducting and mechanically strong composites can be used as heat sink for long time.

Keywords

Carbon nanotubes, carbon/copper composite, electrical properties, mechanical properties, thermal properties

Previous issues

Cloud Medicine set to Revolutionize Doorstep Personalized Healthcare

Various surfactants for 0 – 3 dimensional nanocarbons: Separation, exfoliation and solubilization

Polypyrrole based biofunctional composite layer for bioelectrocatalytic device system

Innovative Graphene-PDMS sensors for aerospace applications 

Effect of hot drawing process and carbonization temperature in electrochemical behavior of electrospun carbon nanofibers

Chemical Reactivity and Electronical Properties of Graphene and Reduced Graphene Oxide on Different Substrates

Laser Raman micro-spectroscopy as an effective non-destructive method of detection and identification of various sp2 carbon modifications in industry and in nature

Electrochemical promotion of ammonia synthesis with proton-conducting solid oxide fuel cells

Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity

Enhancement the properties of high and low-density polyethylene membranes by radiation grafting process

Synthesis of 9-Aminoacridine and its Application as an Anode Material for Aqueous Rechargeable Lithium–ion Batteries

Facile synthesis of novel tough and highly flexible biodegradable membranes for water microfiltration

Investigating the possibility of using acetic acid in place of HF in chromium-benzenedicarboxylates (MIL-53 and MIL-101) synthesis applicable for CO2 adsorption

Upcoming Congress

Knowledge Experience at Sea TM