Department of Chemistry, University of Delhi, Delhi 110007, India
Adv. Mater. Lett., 2013, 4 (10), pp 769-778
DOI: 10.5185/amlett.2013.2424
Publication Date (Web): Oct 13, 2013
Copyright © IAAM-VBRI Press
E-mail: rkakkar@chemistry.du.ac.in
The present work deals with the adsorption of acetaldehyde, one of the most harmful volatile organic compounds (VOCs), on the TiO2 anatase nanosurface. The research was undertaken due to environmental concerns, as the TiO2 nanosurface serves as an excellent catalyst for the adsorption and decomposition of VOCs. The chemistry of aldehydes on metal oxides is complex and elaborate, as it can result in a variety of reactions, such as selective oxidation, alcohols disproportionation, etherification and reductive coupling to higher olefins. The structural properties of the various nanosurfaces were first examined and finally adsorption studies were made on the (TiO2)17 cluster, as it shows least reconstruction and offers all kinds of coordination sites for the study. It is found that a myriad of different adsorption products are formed on the TiO2 nanosurface, depending upon the coordination site. The low coordination (3c) sites are highly reactive and form stronger bonds with the acetaldehyde molecule, whereas adsorption at the four coordination site leads to the reconstruction of the nanosurface. Acetaldehyde chemisorbs onto the surface producing zwitterionic four-membered rings, in which the carbonyl C=O bond is considerably weakened, or it adsorbs on the TiO2 surface in a H-bridge bonded form. The most feasible mode of adsorption on the TiO2 nanosurface is found to be methyl hydrogen migration resulting in the formation of [CH2-C(H)O] species, which may further undergo transformation by β-aldolization to yield crotonaldehyde and butane. Other products investigated in this work include oxidation to acetate and reduction to ethoxy species. The results obtained in this work can be of significant help in deciding the fate of reaction of acetaldehyde on the TiO2 nanosurface, and using it for decomposition of acetaldehyde to benign products.
TiO2 anatase nanosurface, adsorption on nanocrystals, acetaldehyde, density functional theory.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study