Anisotropic and Nonlinear Mechanical Properties in Two-dimensional Nanomaterials
1Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, 40292 USA
2Department of Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
3Department of Computer Science, Columbia University, New York, NY, 10027 USA
4DuPont Manual High School, 120 W. Lee St, Louisville, Kentucky, 40208 USA
Adv. Mater. Lett., 2019, 10 (12), pp 880-886
DOI: 10.5185/amlett.2019.0051
Publication Date (Web): Nov 01, 2019
Copyright © IAAM-VBRI Press
E-mail: m0yu0001@louisville.edu
A systematic computational calculation based on the state-of-the-art quantum mechanics mothed was carried out to study the response of mechanical properties to various strains exerted on graphene, SiC sheet, and recently predicted two-dimensional (2D) sandwiched GaP and InP binary compounds. It was found that these 2D materials undergo an elastic expansion, a structural deformation, and then a structural broken process as the strain increases. Such process strongly depends on the direction of the strain exerted on 2D materials. In particular, a phase transition occurs in 2D sandwiched GaP and InP binary compounds when the strain exerts in zigzag direction. Calculated mechanical properties show that graphene has large linear and nonlinear elastic moduli, followed by 2D SiC monolayer. While the sandwiched GaP and InP structures possess significant anisotropic and nonlinear mechanical properties. Especially, those constants in the zigzag direction are about three to nine times greater than that in the armchair direction. Compared to graphene, they are softer, even along the zigzag direction. Such results provide fundamental information at atomic level for synthesizing, designing, and fabricating nanoelectromechanical and nanoelectronic devices. © VBRI Press.
Mechanical properties, anisotropic behavior, Young&rsquo,s modulus, nonlinear elastic modulus.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India