Anisotropic and Nonlinear Mechanical Properties in Two-dimensional Nanomaterials

Ming Yu1,*, Congyan Zhang1, Safia Abdullah R Alharbi1, Anna Zeng2, Kevin Zeng3, Emily Liu4

1Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, 40292 USA

2Department of Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA

3Department of Computer Science, Columbia University, New York, NY, 10027 USA

4DuPont Manual High School, 120 W. Lee St, Louisville, Kentucky, 40208 USA

Adv. Mater. Lett., 2019, 10 (12), pp 880-886

DOI: 10.5185/amlett.2019.0051

Publication Date (Web): Nov 01, 2019



A systematic computational calculation based on the state-of-the-art quantum mechanics mothed was carried out to study the response of mechanical properties to various strains exerted on graphene, SiC sheet, and recently predicted two-dimensional (2D) sandwiched GaP and InP binary compounds. It was found that these 2D materials undergo an elastic expansion, a structural deformation, and then a structural broken process as the strain increases. Such process strongly depends on the direction of the strain exerted on 2D materials. In particular, a phase transition occurs in 2D sandwiched GaP and InP binary compounds when the strain exerts in zigzag direction. Calculated mechanical properties show that graphene has large linear and nonlinear elastic moduli, followed by 2D SiC monolayer. While the sandwiched GaP and InP structures possess significant anisotropic and nonlinear mechanical properties. Especially, those constants in the zigzag direction are about three to nine times greater than that in the armchair direction. Compared to graphene, they are softer, even along the zigzag direction. Such results provide fundamental information at atomic level for synthesizing, designing, and fabricating nanoelectromechanical and nanoelectronic devices. © VBRI Press.


Mechanical properties, anisotropic behavior, Young&rsquo,s modulus, nonlinear elastic modulus.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM