Cover Page October-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 10, Pages 737-740, October 2019
About Cover

Wearable Health Devices are proving to be extremely helpful for people to keep a check on their health conditions. People can monitor their status at a fitness level and also at the proper medical level. With already a number of smart products in the market and the surge in the implementation IoT and AI in the healthcare sector, it is safe to say that the future lies in virtual healthcare and Wearable Health Devices. The cover photo of this October 2019 issue is inspired by the editorial article "Wearable Healthcare Devices", by Dr. Ashutosh Tiwari.


Dielectric Properties of Cu based Polymeric Composites in X-band of Microwave Frequency

Azizurrahaman Ansari*

Department of Physics, Aligarh Muslim University, Aligarh

Adv. Mater. Lett., 2019, 10 (10), pp 737-740

DOI: 10.5185/amlett.2019.0034

Publication Date (Web): Sep 18, 2019

E-mail: azizurrahaman@rediffmail.com

Abstract

In this work, the microwave dielectric properties of Cu and PEO based composite sheets are studied in the X-band. The desired composites sheets (thickness ~ 250 μm) are prepared via solution casting method, one of the best methods for sheet preparation. Various characterization techniques including the X-ray diffraction and Scanning Electron Microscopy are used to analyze the presence and uniform dispersion of Cu particles into polyethylene oxide (PEO) matrix. Vector Network Analyzer is employed to obtain the scattering parameters (S21/S11), which are then used to extract the dielectric permittivity of the samples using cavity perturbation technique in the X-band of microwave frequency. The real and imaginary parts (dielectric constant and dielectric loss) of the complex permittivity of synthesized composite sheets are found to be increased with the addition of copper contents (10, 20, and 30 wt %). This enhancement of the dielectric properties in the X-band of microwave frequency may be attributed to the interfacial polarization mechanism. © VBRI Press.

Keywords

Composite, dielectric permittivity, microwave, X-band.

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM