Cover Page October-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 10, Pages 715-723, October 2019
About Cover

Wearable Health Devices are proving to be extremely helpful for people to keep a check on their health conditions. People can monitor their status at a fitness level and also at the proper medical level. With already a number of smart products in the market and the surge in the implementation IoT and AI in the healthcare sector, it is safe to say that the future lies in virtual healthcare and Wearable Health Devices. The cover photo of this October 2019 issue is inspired by the editorial article "Wearable Healthcare Devices", by Dr. Ashutosh Tiwari.


Synthesis and Characterization of Humic Acid-coated Fe3O4 Nanoparticles for Methylene Blue Adsorption Activity

Geitu Yirga, H C Ananda Murthy and Eshetu Bekele*

Geitu Yirga, H C Ananda Murthy and Eshetu Bekele*

Adv. Mater. Lett., 2019, 10 (10), pp 715-723

DOI: 10.5185/amlett.2019.0049

Publication Date (Web): Sep 18, 2019

E-mail: eshetubekele@gmail.com

Abstract

Humic acid modified magnetite nanoparticles (HA-Fe3O4 NPs) were synthesized by co-precipitation method by varying the precursor magnetite to HA ratio of 10:1 and 20:1. The synthesized NPs were characterized by FTIR, XRD, SEM-EDX and UV-Vis DR Techniques. The appearance of C=O vibration at 1390 cm-1 confirms positive interaction of carboxylate anion of HA and Fe3O4. The XRD pattern and SEM image shows bare Fe3O4 and HA-Fe3O4 (10:1 and 20:1) exhibit cubic spinel structure and the spherical shape morphology, respectively. The crystallite sizes of NPs were found to be 11.50 nm, 9.17 nm and 12.65 nm for bare, 10:1 and 20:1 Fe3O4-NPs, respectively. The adsorption capacity for the dye was found to increase with increase in contact time, adsorbent dose and initial pH of the solution. The result was best fitted to pseudo 2nd order kinetics model and Langmuir isotherm model. The methylene blue (MB) removal efficiency of bare, 10:1 and 20:1 Fe3O4-NPs from aqueous solutions was recorded to be 95.8%, 99.4%, and 97.6%, respectively. The study confirms the greater efficiency of HA-Fe3O4 NPs compared to bare Fe3O4 for the removal of MB dye. The MB removal efficiency of HA-Fe3O4 NPs was found to be proportional to amount of adsorbed HA. © VBRI Press.

Keywords

Humic acid, magnetite nanoparticles, co-precipitation, methylene blue, adsorption.

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM