Cover Page October-2019-Advanced Materials Letters

Advanced Materials Letters

Volume 10, Issue 10, Pages 676-681, October 2019
About Cover

Wearable Health Devices are proving to be extremely helpful for people to keep a check on their health conditions. People can monitor their status at a fitness level and also at the proper medical level. With already a number of smart products in the market and the surge in the implementation IoT and AI in the healthcare sector, it is safe to say that the future lies in virtual healthcare and Wearable Health Devices. The cover photo of this October 2019 issue is inspired by the editorial article "Wearable Healthcare Devices", by Dr. Ashutosh Tiwari.


Nano-Graphene and Its Derivatives for Fabrication of Flexible Electronic Devices: A Quick Review

Wee Siang Koh1, Kiat Moon Lee1, Pey Yi Toh2, Swee Pin Yeap1,*

1Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology & Built Environment, UCSI University, 56000, Cheras Kuala Lumpur, Malaysia

2Department of Petrochemical Engineering, Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia

Adv. Mater. Lett., 2019, 10 (10), pp 676-681

DOI: 10.5185/amlett.2019.0050

Publication Date (Web): Sep 18, 2019

E-mail: yeapsw@ucsiuniversity.edu.my

Abstract

Along with technology development, the demand for flexible, foldable, and portable electronic devices has grew over the past few years. Successful fabrication of this flexible electronic devices relying on the internal electronic components which are also flexible and lightweight. In this regard, researchers are now working on using nanomaterials which exhibit the desired electronic properties to replace the conventional electronic components. Graphene nanosheet and its derivatives are known for their intrinsic electrical behaviour. Meanwhile, they are lightweight and consume small space in any design. Hence, recent research has been focussing on fabricating flexible and foldable electronic components by attaching the graphene and its derivatives on a thin film/substrate. In fact, this idea has been realized in year 2017 on the first flexible OLED panel that uses transparent graphene-based electrode. In view of the positive impact of this nanomaterial towards future design of electronic devices, the present paper aims to provide a quick review on the current stage of research, the challenges encountered, as well as the future outlook in the use of graphene nanomaterials for designing flexible electronics. © VBRI Press.

Keywords

Graphene, nanotechnology, flexible, foldable, electronic devices.

Previous issues

Current Global Scenario of Electric Vehicles

Review on Detection of Phenol in Water 

Investigating the Machinability of Metallic Matrix Composites Reinforced by Carbon Nanotubes: A Review

Photocatalytic ZnO based PES Membranes for AOP Water Treatments under UV and Sunlight

Plasma Activated Water as a Source of Nitrogen for Algae Growth

Digital Light Processing (DLP) 3D Printing of Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for Tissue Engineering Scaffold Application

Fabrication of Nanoparticle Embedded Polymeric Microbeads as an Efficient Drug Delivery System

Micro/Nanostructured Papers from Bagasse Pulp Reinforced by Nanofibrillated Cellulose from different Agro-Waste Sources

Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped ZnO Nanocrystallites Synthesized via co-Precipitation Method

Nanosecond Laser Surface Patterning of Ti6Al4V Bio-alloy for Improved Biological Performance

Synthesis of Cu2O/Ag Composite Nanocubes with Promising Photoluminescence and Photodegradation Activity over Methylene Blue Dye

Locally available Clays of Bangladesh as a Replacement of imported Clays for Ceramic Industries 

Green Synthesis and Characterization of Silver Nanoparticles using Cassia auriculata Leaves Extract and Its Efficacy as A Potential Antibacterial and Cytotoxic Effect

Upcoming Congress

Knowledge Experience at Sea TM