Magnetic Properties of Intercalated Gr/Ni (111) System

Sergey M. Dunaevsky1,2,*, Evgeniy K. Mikhailenko1,2, Igor I. Pronin3

1Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia
2Saint-Petersburg Electrotechnical University "LETI" St. Petersburg, 197376, Russia
3Ioffe Institute, St. Petersburg, 194021, Russia

 

Adv. Mater. Lett., 2019, 10 (9), pp 633-636

DOI: 10.5185/amlett.2019.0021

Publication Date (Web): Sep 03, 2019

E-mail: smd2000@mail.ru 

Abstract


Intercalation of graphene (Gr) with transition metals is perspective for creating magnetic tunnel junctions and structures of the type graphene/ferromagnetic metal/substrate with perpendicular magnetic anisotropy (PMA). The paper presents the results of first-principle calculations of the magnetic properties for Gr/Fe (Co)/Ni (111) systems. Ab initio calculations of the electron spectrum of the systems were performed in the framework of the spin density functional theory (SDFT). Kohn-Sham single-particle spectra were used to determine total energies of the systems for different spin quantization axes, partial and total densities of the electron states, and also magnetic moments of all atoms. Then, using these magnetic moments, the energies of dipole-dipole interaction were obtained and the magnetic crystalline anisotropy (MCA) of the systems was studied. © VBRI Press.

Keywords

Graphene, spin density functional theory, crystalline magnetic anisotropy.

Current Issue

Advanced Materials Congress Celebrating 10th Years of Establishment


Secure Management of Networked Batteries for Building Integrated Photovoltaics (BIPV) Systems  


The Cause of 100-year Low Carbonated Concrete of the Bridge 


Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections


Morphology/tensile Performance Relationship for LLDPE/PP Double Gated Injected Blends


Preparation and Characterization of Nickel Ferrite Nanoparticles via Sol-gel Method


Nitrogen-doped Diamond Nanowire Gas Sensor for the Detection of Methane


Manufacture of Functional Open-cell Al Foams with Recycled Al Scraps using NaCl Ball Space Holder 


Vilsmeier-Haack Transformations under Non Classical Conditions


New Application of Highly Vesicular Basalt from Jabel Isbil Volcano (Dhamar-Rada'a Volcanic Field), Yemen


An Assessment of Tribological Characteristics under different Operating Condition


Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation


Effects of Silica Modified NiFe2O4 on the Dielectric and Electrical Properties of NiFe2O4 filled Poly (methyl methacrylate) Composites


Previous issues
The Journey of a Decade to Advancing Materials Are the Electrospun Polymers Polymeric Fibers? Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids Prediction of Long-Term Behavior for Dynamically Loaded TPU Investigation of Doped Titanium Dioxide in Anatase Phase. Study ab initio using Density Functional Theory Comparison between Single Al2O3 or HfO2 Single Dielectric Layers and their Nanolaminated Systems Preparation of Stable and Optimized Antibody-gold Nanoparticle Conjugates for Point of Care Test Immunoassays Resonance-Based Temperature Sensors using a Wafer Level Vacuum Packaged SOI MEMS Process Integrated System Based on the Hall Sensors Incorporating Compensation of the Distortions The Efficacy of Cinnamomum Tamala as a Potential Antimicrobial Substance against the Multi-Drug Resistant Enterococcus Faecalis from Clinical Isolates The Effect of Complexing Reagent on Structural, Electrical and Optical Properties of CuS Thin Film Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V Preparation and Evaluation of Sulfonate Polyethylene Glycol Borate Ester as a Modifier of Functional Properties of Complex Petroleum Lithium Grease

Upcoming Congress

Knowledge Experience at Sea TM