The Vortex Glass-Liquid Transition in Fe1.02Se Crystal

Elena Nazarova1*, Krastyo Buchkov1, Armando Galluzzi2, Konstantin Nenkov3, Massimiliano Polichetti2, Gunter Fuchs3

1G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., Sofia, 1784, Bulgaria

2Department of Physics “E.R. Caianiello”, University of Salerno, Giovani Paolo II, 132, Salerno,  I-84084,
Italy & CNR-SPIN, C/o Giovani Paolo II, 132, I-84084 Fisciano (SA), Italy

3Leibniz Institute for Solid State and Materials Research, Helmholtz str.20, Dresden, D-01171, Germany

Adv. Mater. Lett., 2019, 10 (9), pp 627-632

DOI: 10.5185/amlett.2019.0010

Publication Date (Web): May 20, 2019

E-mail: nazarova@issp.bas.bg

Abstract


The vortex-glass (VG) to vortex-liquid (VL) transition is studied in flux-grown Fe1.02Se crystal with nanosized hexagonal phase inclusions. These non-superconducting impurities effectively pin the vortices and shift lightly the irreversibility line to higher fields and temperatures in comparison with single crystal. It is shown that the interplay between vortex pinning and thermal fluctuations enable the observation of VG-VL transition. The existence of this transition was proved by the scaling presentation of current-voltage characteristics at two different magnetic fields. The obtained scaling parameters are practically field independent. The values of the dynamic z exponent are in the range predicted by the VG model, while the values of static ν exponent are a little smaller. This is not considered as a lack of the universality of the model, but rather as a consequence of the type of pinning and special domain morphology of the crystal resembling the granularity in polycrystalline samples. © VBRI Press.

Keywords

superconductor, FeSe, vortex-glas to vortex-liquid transition.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM