Graphene-MoS2-Au-TiO2-SiO2 Hybrid SPR Biosensor for Formalin Detection: Numerical Analysis and Development

Md. Biplob Hossain1*, Mehedi Hassan2, Lway Faisal Abdulrazak3, Md. Masud Rana4, Md. Mohaiminul Islam2, M. Saifur Rahman4

1Department of Electrical and Electronic Engineering, Jashore University of Science and Technology, Jashore, Bangladesh

2Department of Electrical and Electronic Engineering, Bangladesh Army University of Engineering and Technology, Bangladesh

3Department of Computer Science, Cihan University-Slemani, Sulaimaniya, Iraq

4Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh

Adv. Mater. Lett., 2019, 10 (9), pp 656-662

DOI: 10.5185/amlett.2019.0001

Publication Date (Web): Mar 01, 2019



In this letter, a surface plasmon resonance (SPR) biosensor is numerically investigated that used Graphene-MoS2-Au-TiO2-SiO2 hybrid structure for the detection of formalin. This developed sensor sensed the presence of formalin based on attenuated total reflection (ATR) method by observing the change of “surface plasmon resonance (SPR) angle versus the change of minimum reflectance” attributor and “the surface plasmon resonance frequency (SPRF) versus maximum transmittance” attributor. Chitosan is used as probe legend to perform the particular reaction with the formalin (formaldehyde) as target legend. Here, graphene as well as MoS2 are used as biomolecular recognition element (BRE), TiO2-SiO2 bilayer as the improvement of sensitivity and Gold (Au) as the sharp SPR curve. Numerical results are appeared that the variation of SPRF and SPR angle for improper sensing of formalin is quite negligible that confirms the absence of formalin whereas for proper sensing is considerably countable that confirms the presence of formalin. It is also shown that the sensitivity of conventional SPR sensor is 70.74% and the graphene–MoS2-based sensor is enhanced to 77% with respect conventional SPR sensor. The sensitivity is further enhanced to 79 % by including TiO2–SiO2 composite layer with respect to conventional SPR sensor. At the end of this letter, a comparative study of the sensitivity of the proposed work with the existing works is discussed.  © VBRI Press.


Biosensor, surface plasmon resonance, formalin detection, resonance angle, resonance frequency.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM