Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces
Brno University of Technology, Faculty of Mechanical Engineering, Brno, 61669, Czech Republic
Adv. Mater. Lett., 2019, 10 (6), pp 381-385
DOI: 10.5185/amlett.2019.2229
Publication Date (Web): Jan 19, 2019
Copyright © IAAM-VBRI Press
E-mail: piska@fme.vutbr.cz
This work contributes to the problem of individual replacements of human joints by applying new types of implants and materials, made using modern additive technologies (melting of metal powders by laser and electron beam). The main attention is paid to the method called Electron Beam Melting used with the ARCAM Q10plus machine. Analyses of the sintered Ti6Al4V - ELI alloy samples were made from the point of view of production precision and quality after sintering in different technological modes and the surface quality reached after turning and tumbling, including measurement of other physical quantities. The results confirm an important effect of sample inclination in the chamber when building on the precision of the shape and quality of the surface. The tensile strengths were high (up to 1,012 MPa) and statistically consistent. Furthermore, the material exhibited high resistance to machining, expressed in terms of force loading and specific cutting forces, measured for a range of feed per rotation 0.05-0.40mm, cutting speed 48 m/min, depth of cut 1.0 mm and use of coated cemented carbides, in dry cutting conditions. Nevertheless, high quality after machining can be reached. The quality can be improved more by two-steps tumbling technology so finally, a glossy surfaces (Ra< 0.036 um) with high material ratios (Abbot-Firestone curves) and convenient tribological properties were found. Ongoing research is focused on studies of milling and belt grinding technology and fatigue properties in tensile R 0.1 mode of loading.
Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals
Contemporary Advances in Humidity Sensing Materials, Methods, and Performances
Roles of the Debye Length and Skin Depth in the Characterization of Space Charge Interactions in Semiconductor Nanoparticles
Antifungal Activity of Iron-gold and Cobalt-gold co-doped ZnO Nanoparticles
Adsorption and Thermodynamic Parameters of Activated Carbon-Diazepam Systems in Simulated Gastric Fluid
Synthesis, Impedance and Current-Voltage Spectroscopic Characterization of Novel Gadolinium Titanate Nano Structures
Removal of Toxic Dyes from Industrial Waste Water using Chitosan Grafted Itaconic Acid Nanocomposites
Structural, Optical and dielectric properties of Sr doped LaVO4
Design, 3D Development and Finite Element Analysis of Cylindrical Mesh Cage Bioimplants from Biometals
Advancements in Materials Technology for Accomplishing Sustainable Development Goals
A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents
Study of Applications of Radial Basis Function Network in Forecasting
Simulation of LPG Pressure Vessel under Fire Engulfment
Strength Analysis of Friction Stir Welding (FSW) Joint Under Minimize Rotation Speed of FSW Tool
Formation of Pure In2O3 pallets for OLED Application
Study of Soil Nitrogen Level and Splitting on Nutrient Uptake around the Industries of Chhattisgarh, India