Analysis of machined electron beam treated Ti6Al4V-ELI implant surfaces

Miroslav Piska*, Katrin Buckova

Brno University of Technology, Faculty of Mechanical Engineering, Brno, 61669, Czech Republic

Adv. Mater. Lett., 2019, 10 (6), pp 381-385

DOI: 10.5185/amlett.2019.2229

Publication Date (Web): Jan 19, 2019

E-mail: piska@fme.vutbr.cz

Abstract


This work contributes to the problem of individual replacements of human joints by applying new types of implants and materials, made using modern additive technologies (melting of metal powders by laser and electron beam). The main attention is paid to the method called Electron Beam Melting used with the ARCAM Q10plus machine. Analyses of the sintered Ti6Al4V - ELI alloy samples were made from the point of view of production precision and quality after sintering in different technological modes and the surface quality reached after turning and tumbling, including measurement of other physical quantities. The results confirm an important effect of sample inclination in the chamber when building on the precision of the shape and quality of the surface. The tensile strengths were high (up to 1,012 MPa) and statistically consistent. Furthermore, the material exhibited high resistance to machining, expressed in terms of force loading and specific cutting forces, measured for a range of feed per rotation 0.05-0.40mm, cutting speed 48 m/min, depth of cut 1.0 mm and use of coated cemented carbides, in dry cutting conditions. Nevertheless, high quality after machining can be reached. The quality can be improved more by two-steps tumbling technology so finally, a glossy surfaces (Ra< 0.036 um) with high material ratios (Abbot-Firestone curves) and convenient tribological properties were found. Ongoing research is focused on studies of milling and belt grinding technology and fatigue properties in tensile R 0.1 mode of loading.

Keywords

Titanium, EBM, cutting, surface, mechanical properties.

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM