Substrate integrated circular cavity resonator filled with nano-fibrillated cellulose for humidity detection

Majid Ndoye1*, Benoit Bideau1, Aina Heritiana Rasolomboahanginjatovo1, Éric Loranger1, Dominic Deslandes2, Frédéric Domingue1

1Université du Québec à Trois-Rivières (UQTR), Trois-Rivières (QC), Canada

2École de technologie supérieure (ETS), Montréal (QC), Canada

Adv. Mater. Lett., 2019, 10 (6), pp 400-404

DOI: 10.5185/amlett.2019.1927

Publication Date (Web): Jan 14, 2019

E-mail: majid.ndoye@uqtr.ca

Abstract


In this work, a novel microwave sensor fully based on Substrate Integrated Waveguide (SIW) technology filled with nano-fibrillated cellulose for humidity detection is presented for the very first time. The proposed structure consists of a circular SIW cavity resonator perturbed by the inclusion of nano-fibrillated cellulose inside the cavity. Due to the presence of humidity, the relative permittivity of the eco-friendly dielectric, which is known as a humidity sensitive material, changes, leading to a shift of the resonance frequency of the Substrate Integrate Cavity Circular Resonator (SICCR). The proposed humidity sensor structure operates between 4.28 to 4.32 GHz and exhibits a frequency shift of around 20 MHz for relative humidity in the range of 11.7% to 91% RH. The proposed sensing device operates with very low-cost sustainable and renewable material, is simple to manufacture, co-integrates with existing microwave planar circuits and has the advantage of demonstrating high sensitivity performance.

Keywords

Nano-fibrillated cellulose, humidity sensor, microwave cavity resonator, substrate integrated waveguides (SIW).

Previous issues

Celebrating 10th Years of Diamond Open Access Publishing in Advanced Materials  

Cerebral Oxygenation Studies Through Near Infrared Spectroscopy: A Review

Analysis of Fine Sulfoaluminate Cement by Strength and Thermogravimetric Analysis

Characterization of the Interfacial Surface Energy for Composite Electrical Conduction Measurements using Two Full Range Percolation Threshold Models

Quantitative Detect of Fatigue of Membrane of Erythrocyte in Uniform Shear Field

Ecofriendly-developed Polyacrylic Acid-coated Magnetic Nanoparticles as Catalysts in Photo-fenton Processes

Evaluation of Drug Interactions with Medications Prescribed to Ambulatory Patients with Metabolic Syndrome in Urban Area

Fiber-reinforced Cementitious Composite: Sensitivity Analysis and Parameter Identification 

Evaluation of Drug Utilization Patterns Based on World Health Organization Drug use Indicators at Outpatients Clinics

Are Quantitatively Micro-machined Scaffolds Effective for Cell Technology?

Synthesis and Characterization of Gold Nanoparticles from Lobelia Nicotianifolia Leaf Extract and its Biological Activities

Advanced Oxidations of Tartrazine Azo-dye

Antifungal Activity of Salvia jordanii Against the Oral Thrush Caused by the Cosmopolitan Yeast Candida albicans among Elderly Diabetic Type 2 patients

Upcoming Congress

Knowledge Experience at Sea TM