Formation of nano-dispersed Cu particles during aging of a Fe-Cu alloy and dislocation effect

Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao*

Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China

DOI: 10.5185/amlett.2019.2119

Publication Date (Web): Jan 10, 2019



The microstructure evolution in a Fe-Cu alloy with/without pre-deformation during the aging treatment is investigated numerically. The results demonstrate that although the Cu precipitates first nucleate on dislocations, the summit of the nucleation rate occurs in the matrix. Most of Cu particles situate in the matrix immediately after the nucleation. The preferential dissolution of Cu precipitates in the matrix occurs during the Ostwald repining stage, and the vast majority of the residual particles situate on dislocations in an overaged alloy.


Fe-Cu alloy, aging, dislocation, precipitation, modeling.

Current Issue

Intelligent healthcare for future medicine

Review of nanoscale layered transition metal chalcogenide superconductors

Evaluation of NSAIDs antioxidant activity on lipid peroxidation in splenocyte membranes

Morphological, structural, thermal and degradation properties of polylactic acid-waxy maize starch nanocrystals based nanocomposites prepared by melt processing

Influence of surfactant on the patterning behavior of nanosilver within polyacrylamide nanogels

Cell study of the biomimetic modifications on a CoCrMo alloy for biomedical applications

SPIONs and curcumin co-encapsulated mixed micelles based nanoformulation for biomedical applications

Fabrication of Y2O3 coatings by cold-spray

Triclinic LiVPO4F/C cathode for aqueous rechargeable lithium-ion batteries

PRAP-CVD: Up-scalable process for the deposition of PEDOT thin films

Effect of storage time, plasticizer formulation and extrusion parameters on the performance of thermoplastic starch films

Effect of silver nanoparticles on the ammonia gas sensing behavior in diphenylamine based conjugated polymer

Study the possibility of using sisal fibres in building applications

Upcoming Congress

Knowledge Experience at Sea TM