1Applied Research & Innovation, Nova Scotia Community College, Ivany Campus, Dartmouth, NS, B2Y 0A5, Canada
2Ivan Curry School of Engineering, Acadia University, Wolfville, NS, B4P 2R6, Canada
3PennState College of Engineering, Pennsylvania State University, University Park, PA 16802, USA
Adv. Mater. Lett., 2019, 10 (2), pp 107-111
DOI: 10.5185/amlett.2019.2130
Publication Date (Web): Dec 19, 2018
Copyright © IAAM-VBRI Press
E-mail: etienne.mfoumou@nscc.ca
Polydimethylsiloxane (PDMS) is used extensively to study cell-substrate interactions because its mechanical properties are easily tuned in physiologically relevant ranges. These changes in mechanical properties are also known to modulate surface chemistry and cell response. In this study, PDMS pre-polymer was combined with increasing amounts of cross-linker (3.3, 5.0, 10.0, 12.5, 20.0 and 33.3 wt.%). The solutions were mixed in sterile conditions and degassed, then poured into 60 mm cell culture dishes to a depth of 1 mm. This was followed by curing at a constant temperature of 75 oC for 2 hours. The PDMS substrates were then exposed to an air plasma for 10 minutes. All substrates were exposed to UV light for further sterilization and understanding of the structure/morphology of the substrates was obtained with microscopic techniques. A SH-SY5Y neuroblastoma cell line was used in cell culture experiment. Cells were plated at a concentration of 300 x 106 cells/dish on plasma treated PDMS substrates and incubated at 37 oC in a humidified 5 % CO2 environment. For the assessment of morphological changes, images of cells growing on each substrate were captured using an inverted phase contrast microscope. Cell adhesion as well as immunofluorescence analyses were conducted, and the mechanical as well as surface properties of PDMS were correlated to neuroblastoma cell behaviour. The results reveal that the physicality of the extracellular matrix/environment (ECM) substrate governs cell behavior regardless of hormones, cytokines, or other soluble regulatory factors. The approach used in this study may open up new avenues in translational medicine and pharmacodynamics research.
Polydimethylsiloxane, cell-substrate interactions, cell culture, cell transdifferentiation, mechanical and surface properties.
Perspectives on Published Energy Sources and Smart Energy Supplies
State of Art Review on Nanobubbles
Eggshell Membrane Assisted CdS Nanoparticles for Manganese Removal in Water Treatment
Green Chemistry Synthesis of Nano-Hydroxyapatite using Natural Stabilisers
Structural, Optical and Electrical Properties of CaSnO3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method
Phase Change Materials Reinforced with Aluminium Foam for Latent Heat Storage
Influence of Manganese and Copper Doping on Structural and Optical Properties of Chromium Oxide Nanoparticles
Understanding of intriguing metal to semiconductor transition in Ni0.5Zn0.5Fe2O4 nanoparticulates
Flaw Resistance and Mode - I Fracture Energy Redistribution in Bamboo - A Correlation
COVID-19: A Significant Revival Approach - Concurrent Case Study in India
Recent Advances in Biochar Modification for Energy Storage in Supercapacitors: A Review
Viral Evolution of Multiple Coronavirus Genomes on Genomic Index Maps
Solution Combustion Synthesis and Energy Transfer in LaMgAl11O19:Tb3+/Sm3+ Tunable Phosphor
Influence of Fe3O4 and CTABr on the Rate of Degradation of Methylene Blue by H2O2
Effect of Sulfurization Temperature on RF Sputtered MoS2 Thin Film
Fatigue Analysis for Fe-34.5Mn-l0Al-0.76C Tidal Turbine Blades using Rainflow Algorithm
Modelling for the Study of Thermoelastic Properties of Nanoparticles
Potato Starch Edible Films as Environmentally Friendly Carriers for Model Drug: In vitro Release Study